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Appendices
A. Dataset details

Real pair images are obtained directly from the
Megadepth dataset [7] as detailed in the main paper. As a
reference, we display in figure 1 examples of our dataset
with their labeled scale changes. Since our labeling strategy
relies on a 3D model, we can capture extreme scale changes
between images if the collection of images that was used for
the 3D reconstruction was big. While keypoint/descriptors
may not be able to match correctly two images when there
are strong scale changes, we rely on the fact that 3D models
can relate two images if there were images in-between,
i.e., we can compute the relationship between image A and
B if we have an easier-to-match image C in between the
two views. This idea is somehow similar to the strategy
proposed in MODS [12], where authors create synthetic
images between two different views to be able to relate
them. In addition, we also use synthetic pairs to train
ScaleNet. Synthetic pairs are computed on the fly, and
therefore an unlimited number of examples can be created.
We define a set of synthetic transformations with affine
parameters: scale ∈ [0.16, 6], rotation ∈ [−30°, 30°] and
skew ∈ [−0.2, 0.2]. We use the random transformation
to wrap the input image and generate the training pair.
The ground-truth scale is directly the scale factor used to
transform the image.

B. Local-ScaleNet
Local-ScaleNet predicts a dense scale factor map be-

tween a pair of input images. In contrast to ScaleNet, in
which scale estimation is global, pixel-wise Local-ScaleNet
estimations offer a more suitable option when scale trans-
formation significantly varies across the images, e.g., im-
ages with strong perspective distortion.

Architecture. Local-ScaleNet architecture follows the
scheme proposed in ScaleNet (cf. section 3 main paper)
with small variations. Analogous to ScaleNet, Local-
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Figure 1. Image pairs examples of our dataset with their scale
factor annotations computed as the average on logarithmic space
of local scale changes.

ScaleNet takes two input images, A and B, and computes
features, fA and fB , with the same multi-scale feature ex-
tractor block. Features, fA and fB , go into the correlation
layers to calculate the self- and cross-similarities, cA and
cA−B . In contrast to ScaleNet, Local-ScaleNet does not
compute the self-similarities in image B. Since Local-
ScaleNet estimates the scale factor locally, self-similarities
in image B, cB , are not spatially correlated with image
A, and therefore, cB is not used in the per-pixel scale
estimation. Similar to ScaleNet, cA−B and cA go into
our local feature reduction block to process and reduce
the channel dimension of the correlation maps. c′A and
c′A−B are then concatenated and fed into the final dense
prediction network which outputs the local distribution
of scales between images A and B. Furthermore, during
test time, we transform our scale distribution into a scale
factor map by following the pipeline presented in the main
paper (cf. equation 3) in a pixel-wise manner. Due to
image A and B not correlating spatially, we do not apply
the consistency check from the original ScaleNet. Finally,
the scale factor map is resized into the original image A
resolution. Full Local-ScaleNet architecture and pipeline
are shown in figure 2.
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Figure 2. Local-ScaleNet uses a pre-trained VGG-16 and an ASPP block as its multi-scale feature extractor. After features are computed,
a combination of self- and cross-correlation layers are used to calculate the relationship within image A and between images A and B.
Correlation volumes’ dimensionality is reduced through a CNN, and its results are concatenated into a single map. Finally, a dense scale
distribution map is calculated by the final dense prediction block. During inference time, the scale distribution map is converted into a
scale factor map and resized to the original resolution of image A.
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Figure 3. The local dataset generation pipeline, firstly, computes a
random homography transformation. The homography is applied
to an input image to generate a tuple of images. We refer to them
as Source and Target images. The same homography is used to
calculate the source scale map. Moreover, we take an extra random
image from the dataset to fill those regions with zero values in the
Target image due to the homography transformation.

Dataset. As discussed, Local-ScaleNet generates a dense
map of scale distributions. To train it, we need pairs of
images with their corresponding pixel-wise scale ground-

truths. We based our dataset on synthetic pairs of images
as displayed in figure 3. Even though real pairs of images
could be used to train Local-ScaleNet, real image scenes do
not present strong local distortions, i.e., global scale often
reflects the scale changes in local regions. Thus, we use
synthetic pairs to ensure that the global scale differs from
the scales between local regions.

A random homography transformation is generated and
applied to an input image, such that the input image, Source,
and the warped one, Target, are geometrically related by
our homography. We use the same parameters to build
the homography matrix as those presented in appendix A
and add a perspective distortion to ensure different local
scale factors throughout the Target image. Moreover, due
to strong homography transformations, Target image may
contain zero values in the non-overlapping regions as seen
in figure 3. To avoid the network being driven by those
zero values, we filled the non-overlapping regions between
Source and Target images with a randomly sampled im-
age from the dataset. Therefore, our final training pair
is composed by the Source and our new Target-Filled im-
age. Lastly, we use the same homography to generate the
ground-truth scale map between Source and Target-Filled.
As we have the synthetic transformation, we generate the
source scale map by sampling local points throughout the
whole Source image and computing the scale factor within
their neighborhood region as the ratio of their distances in
the Source and Target-Filled images.

C. Extended experiments

This section extends the experiments and results pre-
sented in the main paper.



C.1. Design choices

ScaleNet embraces some key ideas on its learning
scheme and parameterization that help towards delivering
good scale estimations. We discuss them here and highlight
the importance of our decision during ScaleNet design.
Table 1 shows the performance of our baseline, which
uses SuperPoint network without any scale rectification.
Moreover, we report the results of ScaleNet without the
consistency check for an easier comparison against other
designs.

Natural vs logarithmic space. The scale factor is a
relative ratio operator, hence, it is non-linear. We compute
the scale factor as a soft-computation based on quantized
scale classes, si, and a probability distribution (cf. equation
2 main paper). To avoid being biased by high scale
values when computing the soft-scale, we transform the
quantized scale classes, si , to logarithmic space. Hence,
to demonstrate the superiority of this parameterization, we
display in table 1 the results of doing the soft-computation
directly in natural space (Natural rep.). We see that even
though the performance of the natural representation model
is over the baseline, we can improve upon it by the simple
and effective approach of dealing with the scale factors in
the logarithmic space.

Regression vs classification model. Even though predict-
ing directly the scale factor between images is theoretically
possible, in the practical scenario, it appears to be a much
harder task. To prove it, we have trained a regression model
with the L2 loss, where our network had to predict a nor-
malized scale factor between the two images in logarithmic
space. We use logarithmic space since the previous exper-
iment shows the benefits of this representation. As shown
in table 1, the proposed ScaleNet regressor model does not
bring any benefit over the baseline accuracy (which does
not use any scale rectification). We claim that even though
a regressor model could be trained, learning and interpret-
ing the relationships between the quantized scale ranges is
an easier task, and hence, we embrace the decision of a clas-
sification model rather than a regressor.

Hard-assignment vs soft-assignment. Hard-assignment
has been already introduced in the main paper as discrete
ScaleNet (D-ScaleNet). D-ScaleNet uses the maximum
predicted value of the scale distribution as the scale fac-
tor between images, instead of computing the soft-scale (cf.
equation 2 main paper). Even though we provided the ad-
vantages and drawbacks in terms of computation time and
3D metrics (cf. section 5.4 main paper), we further dis-
play their differences in table 1. Results show that the
soft-assignment, and hence, being able to interpolate be-
tween the quantized scale values, provides better results

Pose estimation (AUC)
at 5° at 10° at 20°

Baseline 4.8 7.4 10.4

ScaleNet 8.4 12.3 17.6
Natural rep. 7.2 11.2 15.9
Regression 4.9 7.3 10.1

D-ScaleNet (hard-assig.) 7.9 11.5 16.7

Table 1. Ablation study of the different ScaleNet’s design choices.
Baseline refers to SuperPoint [5] without scale correction, and
ScaleNet refers to the method introduced in the paper without con-
sistency check (cf. equation 3 main paper).

HPatches MMA-5px (%)
Easy Medium Hard

Key.Net-SS / HardNet 66.65 47.40 25.52
w/ ScaleNet 71.98 48.40 21.42

w/ Local-ScaleNet 64.63 45.01 28.43

Table 2. Mean matching accuracy (MMA) results on perspective
sequences from HPatches [1].

than D-ScaleNet. However, D-ScaleNet can offer a faster
alternative to ScaleNet and still bring notable improvements
over the baseline.

C.2. Image matching

Local scale estimation allows to locally correct the scale
of a given keypoint. Local estimations are effective when
the scale transformation significantly varies across the im-
age. Therefore, we test the effect of using the dense variant
of ScaleNet (Local-ScaleNet) on sequences with a strong
perspective change, i.e., with different local scale factors.
Local-ScaleNet substitutes the fully connected layers of
ScaleNet with the CNN dense prediction block detailed in
section B. As the scale correction is local, we combine
ScaleNet with Key.Net/HardNet [3, 11], which allows cor-
recting locally its feature extraction. Specifically, we run
Key.Net in the original image and use the scale map es-
timated by Local-ScaleNet to correct the size of the ex-
tracted patch before computing a descriptor with HardNet.
We split image pairs from HPatches [1] into easy, medium,
and hard subsets according to their perspective distortions.
Table 2 shows that using ScaleNet for local correction is
effective for significant perspective changes but deterio-
rates the performance for less challenging transformations.
Such behavior was also observed for scale and affine in-
variant handcrafted feature extractors [10]. Moreover, as
Local-ScaleNet can only be applied to local descriptors,
global ScaleNet is more suitable as a general approach.

C.3. IMC benchmark

Protocol. We follow the protocol proposed in Image
Matching Challenge [18] for computing their two main



mAA (%) at 10°

Stereo Multiview Average Stereo Multiview Average
SIFT 43.1 43.2 43.2 SuperPoint 32.9 54.5 43.7

w/ ScaleNet 43.4 47.3 45.4 w/ ScaleNet 41.3 61.9 52.0
R2D2-SS 13.4 12.3 12.9 R2D2-MS 34.9 48.0 41.5

w/ ScaleNet 26.3 31.7 29.0 w/ ScaleNet 35.5 46.7 41.1

Key.Net-SS 37.3 57.4 47.4 Key.Net-MS 60.2 73.6 66.9
w/ ScaleNet 56.1 71.9 64.0 w/ ScaleNet 62.6 73.6 68.1

Table 3. Mean Average Accuracy (mAA) at 10°on IMC dataset [18].

tasks, wide-baseline stereo and multi-view reconstruction.
The benchmark looks to the pose errors under different
thresholds and reports the mean Average Accuracy (mAA)
of the reconstructions. We follow the evaluation protocol
with 2,048 keypoints. Moreover, we select DEGEN-
SAC [4] for geometric verification and first-to-second
nearest-neighbour ratio for filtering false-positive matches.
For more details on their evaluation refer to [18]. We search
for the best configuration in stereo and multi-view inde-
pendently for each method. We use the validation scenes
provided in Image Matching Competition1 as authors only
made public the ground-truth for such scenes. Computing
ScaleNet in the test set is not straightforward, since the
benchmark had to be modified to accept a different set of
features for each pair of images. Thus, as a reference to
our method’s effect in their benchmark, we report the best
results obtained in the three validation scenes, Reichstag
(74 images), Sacre Coeur (100 images), and St Peters
Square (100 images).

Results in table 3 display the benefits of camera pose error
when using ScaleNet. The boost of ScaleNet when working
together with a single scale method shows the importance
of rectifying the scale difference between images. Even
though multi-scale methods look for features on multiple
scaled images, the best results are obtained when ScaleNet
corrects one of the images before feature extraction. More-
over, ScaleNet brings benefits to current pipelines when the
scale change between image pairs is extreme, and there-
fore, if the scale factor is not significant as in the evalu-
ated scenes, multi-scale feature extraction is sufficient to
perform the correspondence search.

C.4. Camera pose

In addition to the results of the main paper, we extend
in table 4 the results of the camera pose task. We test
our method together with state-of-the-art combination Su-
perPoint [5] and SuperGlue [14] and report results in the
standard Megadepth [7] test split proposed in [16]. This
split contains 1,500 image pairs from two different scenes,

1https://www.cs.ubc.ca/research/image-matching-challenge

Pose estimation (AUC)
at 5° at 10° at 20°

SP + SuperGlue 35.2 54.7 71.6
w/ ScaleNet 36.3 (+3%) 55.7 (+2%) 72.4 (+1%)

Table 4. Camera pose results on Megadepth test split from [16].
When scale changes are small on the image pairs, ScaleNet brings
more robustness without hurting the performance.

where image pairs suffer from general viewpoint and illu-
mination challenges but not extreme scale changes. Hence,
we see in table 4 that even though ScaleNet does not bring
great improvements, it does not either hurt the performance
when there are no strong scale changes between the image
pairs.

C.5. Dense matching

We also extend the evaluation on dense geometric match-
ing methods, DGC-Net [9] and GLU-Net [17], by reporting
the percentage of correct keypoints (PCK) under multiple
pixel acceptance thresholds, i.e., 1, 5, and 10 pixels. We
use the same sparse correspondence split proposed by [15]
in the Megadepth dataset [7]. As in the main paper, we re-
port the results for the full dataset (All) and create the Easy
(s > 1.2) and Hard (s > 1.8) splits, where s indicates scale
distortions factor between images. Results in table 5 show
that the improvements that ScaleNet brings into the dense
methods are similar across all acceptance thresholds, offer-
ing extra robustness across all splits, and a large boost when
the scale changes between images is strong (Hard split).

C.6. Evaluating scale predictions

Despite the evaluation of ScaleNet in different 3D tasks,
in this section, we introduce the results in scale prediction
accuracy. Although the real impact of ScaleNet is measured
in terms of 3D metrics, knowing its scale accuracy gives a
better understanding of the capability of our scale predictor.

Protocol. To test the accuracy of our scale predictions,
we compute the mean scale ratio, r, between the ground-
truth, SGT , and the estimated scale, s. Specifically, we



All Easy Hard

PCK-1 (%) PCK-5 (%) PCK-10 (%) PCK-1 (%) PCK-5 (%) PCK-10 (%) PCK-1 (%) PCK-5 (%) PCK-10 (%)

DGC-Net 7.4 40.2 51.5 5.3 34.4 48.0 3.2 4.5 9.6
w/ ScaleNet 7.9 (+7%) 41.5 (+3%) 53.3 (+4%) 5.9 (+11%) 36.8 (+7%) 51.4 (+7%) 3.3 (+3%) 20.1 (+347%) 28.7 (+199%)

GLU-Net 21.3 55.5 62.2 19.5 55.4 62.5 1.7 10.8 15.5
w/ ScaleNet 23.3 (+9%) 57.8 (+4%) 64.5 (+4%) 20.4 (+5%) 56.3 (+2%) 64.5 (+3%) 7.3 (+329%) 26.8 (+148%) 33.8 (+118%)

Table 5. Percentage of correct keypoints (PCK) for different pixel thresholds on MegaDepth [7] sparse correspondences. The results are
reported for DGC-Net [9] and GLU-Net [17] without and with our ScaleNet, which consistently improves the performance.

Scale Accuracy (r)
Perfect Random Constant ScaleNet

1.0 4.3 3.2 1.6

Table 6. Scale prediction accuracy computed as the mean scale
ratios, r, between the ground-truth, SGT , and estimated scales, s.

Time (ms)
DGC-Net GLU-Net R2D2 Key.Net ScaleNet

35.4 25.1 384.3 640.5 19.8

Table 7. Comparison of computational times in ms for several
state-of-the-art methods. We report the multi-scale extraction
times for R2D2 and Key.Net/HardNet.

compute the ratio of a scale prediction as r = sa/sb,
sa = max(SGT , s), and sb = min(SGT , s). In addition
to ScaleNet predictions, we also propose two baselines
as a reference: Random makes a random prediction with
s ∈ [0.16, 6], and Constant uses a fixed scale value such as
s = 1.0. In addition, we also indicate the results of perfect
scale estimation in Perfect (r = 1.0). We use the test set
proposed in the relative camera pose experiment of the
main paper (section 5.2).

Results. We report in table 6 the mean scale ratio be-
tween ground-truth and predicted scales. ScaleNet predic-
tions (r = 1.6) are accurate enough to bring images to scale
discrepancies where current local feature extractors can op-
erate. However, even though scale prediction accuracy is
relevant, it is hard to quantify. Therefore, we believe that re-
sults on downstream applications are needed to understand
the impact of ScaleNet image rectification.

C.7. Complexity time

Table 7 introduces the computational time of ScaleNet
and other state-of-the-art methods. Although ScaleNet has
the fastest inference time, it only predicts a single trans-
formation parameter rather than the flow between images
or local keypoints/descriptors. However, we showed that
ScaleNet largely benefits other methods if scale changes
are presented in the images and increases only 19.8ms
the computational time of matching two images. Besides
dense geometric matching models, DGC-Net (35.4ms)

and GLU-Net (25.1ms), we also provided the times of
multi-scale feature extraction of R2D2-MS (384.3ms) and
Key.Net-MS/HardNet (640.5ms). As multi-scale methods
require a minimum image size to work properly, we report
the times when extracting features from an image of size
600× 800, and see that the time for ScaleNet is signifi-
cantly smaller than the feature extractors. Thus, we believe
that if scale robustness is needed, the improvements out-
weigh the computational overhead introduced by our scale
correction.

Besides, some strategies could reduce the impact of
using scale correction. As discussed in the main paper,
ScaleNet could use faster and more efficient feature extrac-
tors, i.e., MobileNet [6], or we could precompute ScaleNet
backbone features and store them. Catching ScaleNet back-
bone features would allow us only to run correlation and
fully connected layers for every new pairs of images, reduc-
ing the complexity of some 3D system, e.g., 3D reconstruc-
tion. As a reference, the time on inference when caching
backbone features is 1.8ms, meanwhile, the inference time
of regular ScaleNet is 19.8ms.

D. Qualitative examples

In this section, we provide some qualitative results from
applying ScaleNet in image pairs from the Megadepth
dataset [7] that contain strong scale changes. In figure 4, we
show the matches that were obtained for each method. We
only plot the matches that survive the Lowe’s ratio test [8]
and MAGSAC [2] geometric fitting method. As in the pa-
per, to avoid the effect of a higher number of keypoints
due to one image being upsampled, we only use the top
2,048 keypoint candidates. We observe that all methods
benefit from the scale correction when images present se-
vere scale variations. Furthermore, examples show diffi-
cult image pairs where the multi-scale methods, SIFT [8],
R2D2 [13], and Key.Net/HardNet [3, 11], could not handle
the extreme-scale change and found few or non-matches be-
tween pairs. We see that on those examples, methods bene-
fit largely from scale rectification. Similarly, SuperPoint [5]
could only find correct matches if the scale factor between
images is corrected.



SIFT  wo/w   ScaleNet

SuperPoint   wo/w   ScaleNet

R2D2-MS  wo/w   ScaleNet

Key.Net-MS/HardNet wo/w   ScaleNet

Figure 4. Comparison of matches without (red boxes) and with (green boxes) the scale rectification proposed by ScaleNet. We only plot
the matches that agree with the camera pose computed by the methods, either with or without ScaleNet. The examples display extreme
scale conditions, and hence, we observe that the number of matches notably increases when applying ScaleNet’s image rectification.
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