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A. Details of Data Acquisition and Annotation

Data Acquisition: The study was approved by the ethics
committee of the Postgraduate Institute of Medical Educa-
tion and Research, Chandigarh. We performed all proce-
dures according to the Declaration of Helsinki and the re-
search guidelines of Indian Council of Medical Research.
According to the hospital’s protocol, 6 hours fasting was ad-
vised a day before the Ultrasound (USG) examinations for
adequate distension of the GB. Two radiologists with ex-
pertise in abdominal USG performed the examinations on
a Logic S8 machine (GE Healthcare) using a convex low-
frequency transducer with a frequency range of 1–5 MHz.
USG assessment was done from different angles using both
subcostal and intercostal views to visualize the entire GB,
including the fundus, body, and neck. Patients were exam-
ined in different positions for adequate visualization of the
GB. The screen area was adjusted so that the GB could oc-
cupy at least 20% of the entire screen.
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Figure S1. Sample ROI annotation. (a) Normal GB with ROI
annotated in green, (b) GB with benign abnormalities with ROI in
blue, and (c) Malignant GB with ROI annotated in red.

ROI Annotation: Apart from image classification labels,
we used bounding-box annotations to capture the GB local-
ization. Two radiologists with 7 and 2 years of experience in
abdomen radiology did the bounding-box annotations with
consensus using the LabelMe [7] software. A single free-
size axis-aligned rectangular box in every image, spanning

Model Acc Spec. Sens.

ROI+VGG16 53.3 ± 9.2 71.9 ± 11.5 73.3 ± 17.9
ROI+VGG16+VA 77.7 ± 4.1 93.8 ± 3.0 72.0 ± 19.5

ROI+ResNet50 76.6 ± 10.7 82.3 ± 10.5 90.9 ± 11.1
ROI+ResNet50+VA 85.4 ± 7.7 92.3 ± 5.9 87.5 ± 9.1

ROI+Inception-V3 71.8 ± 8.9 83.3 ± 8.7 78.5 ± 21.4
ROI+Inception-V3+VA 82.6 ± 4.6 93.1 ± 4.4 82.6 ± 9.9

RetinaNet 74.9 ± 7.3 86.7 ± 7.8 79.1 ± 8.9
RetinaNet+VA 73.3 ± 6.0 92.1 ± 4.4 70.6 ± 14.2

GBCNet (ROI+MS-SoP) 88.2 ± 5.1 94.2 ± 3.7 92.3 ± 7.1
GBCNet+VA 92.1 ± 2.9 96.7 ± 2.3 91.9 ± 6.3

Table S1. Model performances (10-fold cross-validation) for train-
ing with our proposed visual acuity-based curriculum.

the entire GB and adjacent liver parenchyma, preferably
keeping the GB in the box’s center, highlights the region
of interest (see Fig. S1).

B. Performance Improvement with Proposed
Curriculum

We show the performance improvement of various mod-
els with the curriculum-based training in Tab. S1. All mod-
els show improvement in specificity, which indicates the
effectiveness of the proposed blurring-based curriculum in
tackling texture bias.

C. Implementation details

Tab. S2 lists the configurations of all models which we
have used. We trained on the Quadro P5000 16GB GPU.
The table includes a brief description of the various stages
of the network, input image sizes (H × W × D), the op-
timizer, relevant hyper-parameters such as learning rate,
weight decay, momentum, batch size, and the number of
training epochs/steps for the network.
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Model Description Input
Size

Optimizer Batch
size

Epochs/
Steps

YOLOv4 [1] CSPDarknet53 backbone, PANet neck, anchor-
based YOLO head. Total 162-layers. Backbone
was frozen for first 800 step. Entire network was
trainable thereafter. Single stage, anchor-based

608 ×
608×3

SGD LR = 0.0001 mo-
mentum = 0.95 weight
decay = 0.0005

64 3000
steps

Faster-
RCNN [5]

Resnet50 Feature Pyramid backbone. Backbone
was frozen for training. Two-stage, anchor-based.

800 ×
1333×
3

SGD LR = 0.005 mo-
mentum = 0.9 weight de-
cay = 0.0005

16 60
epochs

Reppoints [11] Resnet101 backbone, Group Normalization neck,
and a reppoints head. Backbone was frozen for
first 30 epochs, and entire network was trainable
thereafter. Two-stage, anchor-free

800 ×
1333×
3

SGD LR = 0.001 mo-
mentum = 0.9 weight de-
cay = 0.0001

4 50
epochs

Centripetal-
Net [2]

Improvement over CornerNet model. Uses cen-
tripetal shift to match corners. HourglassNet-104
backbone. Enitre network was trainable. Anchor-
free

511 ×
511×3

Adam LR = 0.0005 4 50
epochs

ResNet [3] Resnet-50 used. All layers were trainable. Output
dimension of last fully connected layer is three
- corresponding to normal, benign, and malig-
nant GB. LR decays by 10% after every 5 epochs
through a step LR scheduler.

224 ×
224×3

SGD LR = 0.005 mo-
mentum = 0.9 weight de-
cay = 0.0005

16 100
epochs

VGG [8] VGG-16 is used. All layers were trainable. LR
decays by 10% after every 5 epochs through a step
LR scheduler.

224 ×
224×3

SGD LR = 0.005 mo-
mentum = 0.9 weight de-
cay = 0.0005

16 100
epochs

Inception [9] Inception-V3 used. All layers were trainable. LR
decays by 10% after every 5 epochs through a step
LR scheduler.

299 ×
299×3

SGD LR = 0.005 mo-
mentum = 0.9 weight de-
cay = 0.0005

16 100
epochs

RetinaNet [4] Resnet-18-FPN used as backbone. All layers were
trainable. Three output classes corresponding to
normal, benign, and malignant GB.

512 ×
512×3

Adam LR = 0.0001 8 50
epochs

EfficientDet
[10]

EfficientNet-B4 used as backbone and BiFPN as
feature network. All layers were trainable. Three
output classes corresponding to normal, benign,
and malignant GB.

1024×
1024×
3

Adam LR = 0.001 2 50
epochs

MS-SoP Clas-
sifier (Ours)

16 MS-SoP layers. All layers were trainable.
Three output classes corresponding to normal, be-
nign, and malignant GB.

224 ×
224×3

SGD LR = 0.005 mo-
mentum = 0.9 weight de-
cay = 0.0005

16 100
epochs

Table S2. Implementation details for the different baseline networks used for classification and gallbladder localization.

D. Calculating Precision and Recall for GB Lo-
calization Networks

For computing precision and recall during the GB lo-
calization phase, as suggested by [6], if the center of the
predicted region lies within the bounding box of the ground
truth region, then we consider a region prediction to be a
true positive; otherwise, we consider the region prediction
to be a false positive due to localization error. Further, we
consider the zero/no region prediction as a false negative
(all our images contain GB, and the localization network’s
task is to merely localize it).

E. GradCAM Visuals for GBCNet

Figure S2 shows the sample Grad-CAM visualizations
of the predictions using GBCNet (ROI+MS-SoP) with cur-
riculum learning.

F. ROI Visuals

In figure S3, we show sample predictions of the GB re-
gion localization for different models. We also show the re-
gion of interest as perceived by the expert radiologists. The
localization model is fairly accurate in capturing important
regions of the USG image.



Figure S2. Sample Grad-CAM visuals of GBCNet with curriculum learning. (a) Normal, (b) Benign, and (c)–(f) Malignant samples.

Figure S3. Sample visual results of RoI Detection models. First row - Faster-CNN, second row - YOLOv4, third row - Reppoints, and
fourth row - CentripetalNet. Dark red is the ROI prediction by the model and light yellow is expert radiologists’ perception of ROI.
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