
DiGS : Divergence guided shape implicit neural representation for unoriented point clouds

A. Supplementary Material
Here we provide supplementary material for the pro-

posed divergence guided shape implicit neural representa-
tion. In Section A.1 we discuss SDF properties, theory be-
hind the proposed divergence constraint, and a second order
supervised constraint. In Section A.2 we provide proofs and
additional visualuzations for the proposed geometric initial-
izations, as well as visualizations of our overall training pro-
cedure. In Section A.3 we provide additional experimental
results. Finally, we provide a high resolution video show-
casing the performance of our method in multiple scenarios
at URL.

A.1. SDF learning theory and the divergence term

A.1.1 SDF properties

As explained in Section 5, current losses enforce two prop-
erties of SDFs, the function should be zero on the surface
and the gradient of the norm should be one everywhere. In
particular they are looking at two scalar fields related to the
SDF function: the function itself, and the gradient norm
field. On the other hand we also considered two more scalar
fields, the divergence and curl of the gradient vector field of
the SDF function. In Figure 10 we visualise the ground
truth value of these four fields for three 2D shapes. We
can see straight away that the curl is zero everywhere (as
explained in Section 5), and the gradient norm is one every-
where. The divergence on the other hand has very low mag-
nitude in most areas, spiking sharply at points such as cen-
tres, skeletons or corners of the shape, and diffusing quickly
from there.

A.1.2 Understanding the divergence constraint

The divergence theorem interpretation. The divergence
theorem [31] states that integrating over the outward flow in
a volume using a triple integral of the divergence is equiva-
lent to a double integral of the flux through its encapsulating
surface.∫∫∫

V

∆Φ(x; θ)dV =

∫∫
S

∇Φ(x; θ) · n̂dS (13)

To intuitively understand what the divergence at a point
means, consider the above equation with the volume V be-
ing a ball centered at the point, and taking the limit of the
radius to 0. Then the divergence of a point is how much
the vector field moves towards that point or away from that
point from all directions, where mostly moving towards

the point implies positive divergence (often called a sink),
mostly moving away from that point implies negative di-
vergence (often called a source), and it being balanced im-
plies zero divergence. Thus a point having low divergence
magnitude implies that the direction of the gradients are not
changing much around that point. The theorem implies that
divergence of a single point is heavily influenced by the sur-
rounding region, so it incorporates a lot of local information
of the (gradient) vector field.

Minimising Divergence as Regularisation & the
Dirichlet Energy. A common setup in machine learning is
to not only optimise for a given loss function, but to penalise
model complexity by regularising towards less complex so-
lution. This can be viewed as an Occam’s Razor principle,
where simpler solutions are often better explanations/pre-
dictions. We can quantify the complexity of the SDF we
have solved for using the Dirichlet Energy. The Dirichlet
Energy of a function Φ over a space Ω gives a notion for
how smooth variable a function is [11], defined by the con-
vex functional

E[Φ] =
1

2

∫
Ω

∥∇Φ(x)∥22dx. (14)

Using Green’s first identity we have that

E[Φ] =
1

2

∫
∂Ω

⟨∇Φ(x),n(x)⟩Φ(x)dx−1

2

∫
Ω

∆Φ(x)Φ(x)dx

(15)
and its functional derivative is

DE[Φ]Ψ =

∫
∂Ω

⟨∇Φ(x),n(x)⟩Ψ(x)dx−
∫
Ω

∆Φ(x)Ψ(x)dx

(16)
where n is the outward normal vector to the boundary
∂Ω. Thus to minimise the Dirichlet energy, the functional
derivative needs to be 0 for all Ψ. As Ψ is a infinitesimal dis-
placement of Φ, it vanishes on ∂Ω, so we get ∆Φ(x) = 0.
This is Laplace’s equation, whose solutions are harmonic
function (e.g. steady-state heat equation, which will have a
unique solution under sufficiently regular boundary condi-
tions).

However we are more restrictive in the functions Φ we
want to minimise E[Φ] for, specifically we only consider
Φ that interpolate our surface points within its zero level
set (which can be considered as a boundary condition) and
the eikonal equation must hold. As a result we would not
be able to solve for a harmonic function, as most SDFs
are not harmonic (see Figure 10 for the actual divergence
field). However as our functional is convex, to find a func-
tion that satisfies our conditions and has minimal Dirichlet
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Figure 10. Ground Truth for 2D shapes. We can see that the divergence of the gradient vector field spikes sharply at points such as centres,
skeletons or corners of the shape, and diffuses quickly from there.

energy, it suffices to find the function satisfying our condi-
tions whose absolute value of the functional derivative is as
small as possible, i.e. minimising our divergence term Ldiv

(Equation 10).
Note that this loss term is specifically defined over

Ω \ Ω0, compared to (6) which is defined over Ω. The
difference, Ω0, is a set of measure zero and mathemati-
cally does not change much, but it does computationally: to
evaluate our losses we have random samples over the space
(Ω ≈ Ω \ Ω0) and samples at ground truth surface points
(i.e., heavy sampling on the surface Ω0). Thus (6) is com-
puted over both sets of samples, while the divergence loss
term is only computer over the former. If we computed the
divergence loss over the heavily sampled surface points, it
would make our surface drastically smooth. In practice we
want the opposite of this: a surface with fine detail will have
high variability in its SDF near the surface and low variabil-
ity further away from the surface.

PHASE [26] also use the Dirichlet energy term for regu-

larisation in their method, but motivate it from the Van der
Waals-Cahn-Hilliard (WCH) theory for the physical phe-
nomenon of phase transitions, and they do not anneal the
loss.

Toy Problem. We give more visualisations for the toy
problem discussed in Section 5. The experiment was re-
peated 20 times for each of the four cases (20x20 grid
without divergence, 20x20 grid with divergence, 200x200
grid without divergence and 200x200 grid with divergence),
where the same randomly sampled point constraints were
used for the four experiments in the same repetition. Fig-
ure 11 shows the learned functions for five repetitions.
When the divergence term is present, the contour lines are
more smooth and the spacing is more uniform, as desired,
showing that they do a better job at maintaining the Eikonal
equation. When the divergence term is absent, sometimes
the sign of the function is considerably incorrect, with neg-
ative above y = 0 and positive below, showing it is less
stable and more variable and thus that our divergence term



20x20 wo div 20x20 w div 200x200 wo div 200x200 w div

Figure 11. Five repetitions of the toy problem. Contour lines and coloring shows the learned function. Black dots on the lines y = −1,
y = 0 and y = 1 show the point constraints. When the divergence term is present, the contour lines are more smooth and the spacing is
more uniform, as desired. When the divergence term is absent, sometimes the sign of the function is considerably incorrect, with negative
above y = 0 and positive below. Notice that when the sampling for the point constraints are not uniform, e.g., the last row where the
constraints are almost clustered in a diagonal, the learned function is often biased.

is acting as regularization. Also notice that when the sam-
pling for the point constraints are not uniform, e.g., the last
row where the constraints are almost clustered in a diagonal,
the learned function is often biased.

A.1.3 Understanding the divergence constraint in 2D

We perform qualitative analysis of the proposed approach
on 2D simple shapes: circle, L shape polygon and Koch’s

snowflake polygon. In this experiment we trained a net-
work with 4 layers and 128 elements in each layer with
sine activation functions for 10K epochs, sampling a new
set of points in each epoch. We compare to SIREN [37],
SIREN without normal vectors, and the proposed DiGS ap-
proach with the proposed MFGI initialziation and without
it. The results are shown in Figure 12 and Figure 13 where
a heatmap is used to visualize the learned distance func-
tion, the eikonal term, the divergence, the curl and the dif-



ference between the unsigned predicted distance and the
ground truth distance. For the circle shape, incorporating
the divergence constraint without decay yields the best re-
sult since the circle is a smooth closed shape without fine
detail. In contrast, Koch’s snowflake is characterised with
sharp edges, therefore starting with the divergence con-
straint and annealing it yields the best performance. In this
case the divergence term guides the learning process to a
smoothed version of the snowflake, and the annealing al-
lows it to fit the geometry more tightly. SIREN without
the normal vectors exhibits ghost geometries (zero level sets
that should not appear), while DiGS does not.

The initialization significantly effects the sign of the dis-
tance function as well as the model’s ability to properly re-
construct fine detail, particularly for the snowflake example.

A.1.4 Second order supervision constraint

Normal vectors are often not available during training and
are therefore estimated using some local approximation
method [5, 6, 14, 19]. Some methods also provide an ap-
proximation of the principal curvatures [5, 14]. The mean
curvatures κmean = 1

2 (κ1 + κ2) provides second order in-
formation that can be utilised as supervision for learning
shape representation. We propose a supervised variation to
DiGS that penalizes points on the surface for having a dif-
ferent mean curvature than the divergence of the vector field
using the following constraint:

Lcurv =

∫
Ω0

|∆Φ(x; θ)| − 2 |κmean| dx (17)

The new supervised loss is given by:

LDiGS+curv =λALA + λBLB+

λC2LC2 + λDLD + λcurvLcurv

(18)

Note that normal and curvature estimations are noisy
and highly depend on local neighboring points support size,
therefore adding these supervisory signals does not guaran-
tee improved performance.
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Figure 12. Qualitative 2D results. Visualizing informative quantities as heatmaps over the evaluation space: (left to right) sign distance
function, divergence, eikonal term, curl, and distance difference between ground truth and inference for the Circle and L shapes.
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Figure 13. Qualitative 2D results. Visualizing informative quantities as heatmaps over the evaluation space: (left to right) sign distance
function, divergence, eikonal term, curl, and distance difference between ground truth and inference for the Koch Snoflake shape.



A.2. Geometric initialization and training proce-
dure

A.2.1 Further initialization visualizations

Following Section 4, we provide a visualization for the
proposed geometric initialization with and without multi-
frequencies in Figure 14 which shows the SDF, Eikonal
term and divergence term. It shows the sphere-like (circle-
like in this 2D case) level sets which provide a much
smoother Eikonal and divergence terms. We qualitatively
compare it to the initialization method proposed by Sitz-
mann et. al. [37]. This initialization plays a major role in
shape space learning.

A.2.2 Proofs

The following propositions and proofs show how we in-
tialize our network to a sphere (i.e. the SDF to the func-
tion Φ(x) = ∥x∥2). Following Williams et al. [43], rather
than roughly approximating the norm with our function
class, we instead do a much better approximation to the
squared norm, Φ(x) = ∥x∥22, (which we do in Equation 22).
We then apply the following function to the output of the
SIREN:

ν(x) = sign (x)
√
|x|+ ε, (19)

where sign (x) is important as we are learning an SDF, and
ε is important for both numerical stability and ensuring the
function’s derivative is continuous and sub-differentiable.
We use ε = 10−8.

Proposition 4.1. Let Φ be a single hidden layer SIREN
(n = 1 in Equation 1) of dimension Mn and let x be a
point within the unit ball. Set, wn = −1, Wn−1 = π

2 I ,
bn−1 = π

21 and bn = Mn. Then, ν(Φ(x)) ≈ ∥x∥2.

Proof. For 1D input z ∈ [−1, 1] we can approximate z2 by
1− sin

(
π
2 z +

π
2

)
(see Figure 15).

Then

Φ(x) = (−1)
T
sin

((π
2
I
)
x+

(π
2
1
))

+Mn (20)

=

Mn∑
i=1

1− sin
(π
2
xi +

π

2

)
(21)

≈
Mn∑
i=1

x2
i (22)

= ∥x∥22 (23)

so ν(Φ(x)) ≈ ∥x∥2.

To extend this to networks with an arbitrary number of
layers, we design layers ϕi that preserve the norm on expec-
tation w.r.t. the weights of each layer up to the penultimate
layer, i.e., E[∥ϕi(x)∥2] = ∥x∥2 for i = 1, . . . , n − 2. We
first prove the following lemmas.
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Figure 14. Visualization of the proposed geometric initialization
and multi-frequency geometric initialization for sinusoidal repre-
sentation networks in 2D compared to Sitzmann et. al. [37]. De-
picting the sign distance function (left), eikonal (middle) and, di-
vergence (right).

1 0 1
z

f(z)
z2

1 sin(2z + 2 )

Figure 15. Approximating z2 using 1− sin
(
π
2
z + π

2

)
.

Lemma A.1. Let X,Y be two random d-dimensional
vectors with elements Xi and Yi sampled i.i.d. from

U
(
−
√

3
d ,
√

3
d

)
. Then E [∥X∥] = E [∥Y ∥] = 1 and

E [|⟨X,Y ⟩|] = 0.

In words, random vectors generated i.i.d. from the above
distribution are on average unit norm and orthogonal.

Proof. We have that E [Xi] = E [Yi] = 0 and var(Xi) =

var(Yi) = 1
12

(
2
√

3
d

)2

= 1
d . Thus note that E

[
X2

i

]
=

E
[
Y 2
i

]
= E

[
(Xi − E [Xi])

2
]
= var(Xi) = 1

d . By the



weak law of large numbers we have that for any ε > 0

P
(∣∣∣∣X2

1 + ...+X2
d

d
− E

[
X2

i

]∣∣∣∣ > ε

)
≤ var(X2

i )

dε2
(24)

∴ Pr

(∣∣∣∣∥X∥22
d

− 1

d

∣∣∣∣ > ε

)
≤ var(X2

i )

dε2
(25)

∴ Pr

(∣∣∣∣∥X∥22
d

− 1

d

∣∣∣∣ ≤ ε

)
≥ 1− var(X2

i )

dε2
(26)

so ∥X∥22 ≈ 1. It follows that E [∥X∥2] = E [∥Y ∥2] = 1.
Furthermore, we have that

E [⟨X,Y ⟩] = E

[
d∑

i=1

XiYi

]
(27)

= dE [XiYi] (28)
= dE [Xi]E [Yi] (29)
= 0. (30)

where Equation 29 follows from them being independent.

Lemma A.2. Consider A ∈ Rm×p, p ≤ m, such that

Aij ∼ U
(
−
√

3
m ,

√
3
m

)
. Then for any x ∈ Rp we have

that ∥Ax∥2 ≈ ∥x∥2.

Proof. By Lemma A.1 the p columns of A, which are of
dimension m, are on average of unit norm and orthogonal
to each other (note p ≤ m). As a result ATA ≈ Ip, so

∥Ax∥22 = xTATAx ≈ xT Ix = ∥x∥22

implying that ∥Ax∥2 ≈ ∥x∥2.

Lemma A.3. Consider A ∈ Rm×p, m >> 10, such that
Aij ∼ U

(
−
√

3
m ,

√
3
m

)
. Then for x ∈ Rp s.t. ∥x∥2 ≤ 1

we have that sin(Ax) ≈ Ax.

Proof. By Lemma A.2 we have that ∥Ax∥2 ≈ ∥x∥2. Fur-
thermore since A is generated uniform randomly, the values
of Ax ∈ Rm should be randomly distributed, therefore as
∥Ax∥2 ≈ ∥x∥2 ≤ 1 and m ≫ 10, with high probability
|(Ax)i| < 0.2. Thus sin ((Ax)i) ≈ (Ax)i (as it is within
the linear region of sine), so sin(Ax) ≈ Ax.

Proposition 4.2. Let Φ be a n-hidden layer SIREN (Equa-
tion 1) that maps from RM0 → R and ∥x∥2 ≤ 1. Set

Wi ∼ U
(
−ciwr, c

i
wr

)
, ciwr =

√
3

Mi+1
, bi = 0 for

0 ≤ i ≤ n − 2 and Wn−1 = π
2 I , bn−1 = π

21, wn = −1
and bn = Mn. Then ν(Φ(x)) ≈ ∥x∥2.

Proof. We first prove that the input to the last hidden layer,
xn−1, has the property that ∥xn−1∥2 ≈ ∥x∥2. Proposi-
tion 4.1 then implies that ν(Φ(x)) ≈ ∥xn−1∥2 ≈ ∥x∥2, as

xn−1 is essentially the input to a one hidden layer network
satisfying Proposition 4.1.

Now for for 0 ≤ i ≤ n− 2, if ∥xi∥2 ≤ 1,

∥xi∥2 ≈ ∥Wixi∥2 (∗)
≈ ∥ sin(Wixi + bi)∥2 (†)
= ∥xi+1∥2 (31)

where ∗ holds from Lemma A.2 and † holds due to bi = 0
and Lemma A.3.

Thus as ∥x0∥2 = ∥x∥2 ≤ 1, by induction ∥x∥ ≈
∥xn−1∥2.

A.2.3 DiGS training procedure comparison

Following Section 3, we provide further visualizations in
Figure 16 and Figure 17 to compare the difference between
the training of DiGS and SIREN wo n, highlighting the four
phases of DiGS. SIREN wo n fits to the shape very quickly,
but does not do so in a consistent manner and thus has multi-
ple surfaces interpolating the surface points that have differ-
ing orientations for what is inside and out (best seen with the
2D contours). It then tries to refine and improve upon this,
but is stuck with the ghost geometry from its early fitting.
DiGS on the other hand has a structured training procedure
that prevents this: it slowly changes the SDF for the noisy
sphere, allowing more and more details, which reduces in-
correct orientation and thus ghost geometry from occurring.
As SIREN wo n does not have a zero level set at initializa-
tion (see the contour plot for the 2D examples), there is no
visualization for its initialization in 3D. Note that the initial-
ization for DC is the same noisy sphere as the initialization
for the gargoyle shape, however it may appear slightly dif-
ferent because it is rotated and cut due to the bounding box
for the DC shape.
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Figure 16. Visualisation of DiGS and SIREN wo n at six points during training for 2D shapes. The 6 points are labelled according to their
position relative to the four phases of DiGS’ training. A contour plot of the learned function is shown: the black dots are surface points,
the green arrows are ground truth normals and the red arrows are the current normals at those points.
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Figure 17. Visualisation of DiGS and SIREN wo n at six points during training on 3D shapes from SRB [7]. The 6 points are labelled
according to their position relative to the four phases of DiGS’ training. The current zero level set at the point is shown and colored by
the distance to the closest ground truth point (thresholded at one). As SIREN wo n does not have a zero level set at initialization (see the
contour plot for the 2D examples), there is no visualization for its initialization in 3D.



A.3. Additional experiments and detail

Code and model parameters available at our project page
https://chumbyte.github.io/DiGS-Site/.

A.3.1 Evaluation metrics

To compare between two point sets X1,X2 ⊂ R3, we
use the Chamfer (dC) and Hausdorff (dH ) distances from
Williams et al. [44]. For the ShapeNet dataset, instead of
this Chamfer distance we report the squared Chamfer to be
consistent with previous works [34, 45]. Note that these
metrics compares the accuracy of the predicted surface of
the shape. To compare between the implicit function learnt
and the ground truth mesh, we use the volumetric Intersec-
tion over Union (IoU) of the interior of the shapes as per
Mescheder et al. [29]. Note that this metric compares the
underlying occupancy (interior) predicted by the method.

We define the

dC(X1,X2) =
1

2
(dC⃗(X1,X2) + dC⃗(X2,X1)) (32)

dH(X1,X2) = max(dH⃗(X1,X2), dH⃗(X2,X1)) (33)
(34)

where

dC⃗(X1,X2) =
1

|X1|
∑

x1∈X1

min
x2∈X2

∥x1 − x2∥2 (35)

dH⃗(X1,X2) = max
x1∈X1

min
x2∈X2

∥x1 − x2∥2 (36)

are the one directional Chamfer distance and one directional
Hausdorff distance respectively.

We define the Chamfer distance used in Park et al. [34]
as the squared Chamfer distance, given by

dsqC (X1,X2) = dsq
C⃗
(X1,X2) + dsq

C⃗
(X2,X1) (37)

dsq
C⃗
(X1,X2) =

1

|X1|
∑

x1∈X1

min
x2∈X2

∥x1 − x2∥22 . (38)

(39)

For the volumetric IoU, following Mescheder et al. [29]
we obtain unbiased estimates of the occupied (interior) vol-
ume of the shapes by randomly sampling 100k points X
in the space. Thus given the known occupancy of the
ground truth mesh OGT (x) ∈ {0, 1} and the predicted SDF
Φ(x) ∈ R for a points x ∈ X , the occupancy of the SDF is
given by

OΦ(x) =

{
1 Φ(x) < 0

0 otherwise
(40)

method SIREN IGR DiGS
time [ms] 5.2 17.5 12.0

# parameters 66.5K 2.1M 66.5K

Table 5. Time performance results per iteration. Comparing stan-
dard SIREN (excluding the normal estimation stage time) to DiGS.
Results are reported in milliseconds (ms).

and the IoU is given by

IoUX (OGT , OΦ) =

∑
x∈X OGT (x) and OΦ(x)∑
x∈X OGT (x) or OΦ(x)

. (41)

A.3.2 Experimental setup and timing performance

The surface reconstruction experiments on the Surface Re-
construction Benchmark dataset [7] were implemented in
PyTorch and trained on a single Nvidia RTX 2080 GPU.
The architecture for 2D experiments our method is a 4 layer
MLP with sinusoidal activation (SIREN) with 128 nodes in
each layer. The architecture for 3D reconstruction experi-
ments our method is a 4 layer MLP with sinusoidal activa-
tion (SIREN) with 256 nodes in each layer, and for scene
reconstruction we increase that to 8 layers and 512 nodes.
For shapespace we used an 8 layer MLP with sinusoidal ac-
tivation (SIREN) with 512 nodes in each layer. Our method
does not add parameters to the standard SIREN approach.
Note that due computing the divergence term, there is an
increase in computation time which is mainly attributed to
computing (and back propagating) the gradient of the gra-
dient. At inference time SIREN and DiGS have the same
time and computation performance. Note that to train the
standard SIREN, a preprocessing normal estimation stage
is required. The number of parameters and timing perfor-
mance are reported in Table 5 for the 2D reconstruction net-
works. It shows the increase in training time (per iteration)
for DiGS compared to SIREN, however DiGS is still faster
and has fewer parameters compared to IGR.

A.3.3 Surface reconstruction on SRB

Implementation details. The input point cloud is first cen-
tered to zero and scaled to have maximum norm of one.
Then a bounding box that is 1.1 times the size of the shape
is selected. Each iteration we sample 15,000 points from
the original point cloud and sample 15,000 points uniformly
randomly in a bounding box. We train for 10,000 iterations
with a learning rate of 5e-5.

We report the values for DGP [44], NSP [45] and
PHASE/PHASE+FF [26] from their respective works, and
report the results for FFN [39] from Williams et al. [45] and
IGR+FF from Lipman et al. [26]. We report the results for

https://chumbyte.github.io/DiGS-Site/


Mean Anchor Daratech DC Gargoyle Lord Quas
GT GT Scans GT Scans GT Scans GT Scans GT Scans

Method dC dH dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗

DGP 0.21 5.18 0.33 8.82 0.08 2.79 0.20 3.14 0.04 1.89 0.18 4.31 0.04 2.53 0.21 5.98 0.06 3.41 0.14 3.67 0.04 2.03
IGR 0.19 2.99 0.23 4.71 0.12 1.32 0.25 4.01 0.14 1.59 0.17 2.22 0.09 2.61 0.18 2.85 0.1 1.29 0.12 1.17 0.07 0.98
SIREN 0.19 3.86 0.31 7.32 0.11 1.23 0.21 4.74 0.09 1.85 0.15 2.37 0.07 2.71 0.17 4.26 0.09 0.82 0.12 0.62 0.08 0.81
NSP 0.17 2.85 0.22 4.65 0.11 1.11 0.21 4.35 0.08 1.14 0.14 1.35 0.06 2.75 0.16 3.20 0.08 2.75 0.12 0.69 0.05 0.62
PHASE 0.16 2.77 0.21 4.29 0.09 1.23 0.18 2.92 0.08 1.80 0.15 2.52 0.05 2.78 0.16 3.14 0.07 1.09 0.11 0.96 0.04 0.96
DiGS + n 0.18 3.55 0.28 5.71 0.11 1.14 0.21 5.02 0.09 1.75 0.15 2.13 0.06 2.74 0.16 3.81 0.09 0.90 0.12 1.1 0.06 0.77
IGR wo n 1.38 16.33 0.45 7.45 0.17 4.55 4.9 42.15 0.7 3.68 0.63 10.35 0.14 3.44 0.77 17.46 0.18 2.04 0.16 4.22 0.08 1.14
SIREN wo n 0.42 7.67 0.72 10.98 0.11 1.27 0.21 4.37 0.09 1.78 0.34 6.27 0.06 2.71 0.46 7.76 0.08 0.68 0.35 8.96 0.06 0.65
SAL 0.36 7.47 0.42 7.21 0.17 4.67 0.62 13.21 0.11 2.15 0.18 3.06 0.08 2.82 0.45 9.74 0.21 3.84 0.13 4.14 0.07 4.04
IGR+FF 0.96 11.06 0.72 9.48 0.24 8.89 2.48 19.6 0.74 4.23 0.86 10.3 0.28 3.98 0.26 5.24 0.18 2.93 0.49 10.7 0.14 3.71
PHASE+FF 0.22 4.96 0.29 7.43 0.09 1.49 0.35 7.24 0.08 1.21 0.19 4.65 0.05 2.78 0.17 4.79 0.07 1.58 0.11 0.71 0.05 0.74
Our DiGS 0.19 3.52 0.29 7.19 0.11 1.17 0.20 3.72 0.09 1.80 0.15 1.70 0.07 2.75 0.17 4.10 0.09 0.92 0.12 0.91 0.06 0.70

Table 6. Results on the Surface Reconstruction Benchmark using Chamfer dC , Hausdorff distance dH . We compare methods with normal
supervision above the line and without normal supervision below the line. The scans column reports the one sided distances (dC⃗ , dH⃗ )
between the reconstruction and the simulated scans which give a measure of the reconstruction’s overfit to the noisy input.

Our DiGs IGR wo n SIREN wo n Our DiGS + n SIREN IGR
without normals with normals

Figure 18. Qualitative results of surface reconstruction on the anchor and gargoyle shapes from the Surface Reconstruction Benchmark [7]
compared to state of the art approaches (IGR, SIREN) that use normal vectors as ground truth.



GT Scans
Method dC dH dC⃗ dH⃗
SIREN wo n 0.42 7.67 0.08 1.42
DiGS L1 0.20 4.47 0.07 1.77
DiGS L2 0.25 5.18 0.07 1.67
DiGS no-decay 0.21 4.45 0.09 2.58
DiGS lin-decay 0.20 4.41 0.07 1.64
DiGS curv 0.30 4.83 0.10 1.57
DiGS L1 MFGI 0.19 3.52 0.08 1.47

Table 7. DiGS ablation study on the Surface Reconstruction
Benchmark [7]. We compare design choices such as annealing
method (linear, step and no annealing), divergence term penalties
(L1 vs L2), initialization method (MFGI vs SIREN) and curvature
ground truth. We use the Chamfer dC and Hausdorff distance dH
metrics.

SAL [2], IGR/IGR wo n [17] and SIREN/SIREN wo n [37]
using their code.

Additional quantitative results. We provide additional
quantitative results for surface reconstruction on the Surface
Reconstruction Benchmark [7]. Table 6 is an extended ver-
sion of Table 2 from the main paper that includes compar-
ison to additional methods with normal vector supervision.
The results show that we are able to achieve the best re-
construction compared to other methods without normal su-
pervision. Additionally,we achieve improved performance
when using normal vector supervision compared to a vanilla
SIREN and show comparable results to other methods.

Additional qualitative results. We provide additional
qualitative results for surface reconstruction on the Surface
Reconstruction Benchmark [7]. Figure 18 shows visualiza-
tions of the output reconstruction of different methods that
use normal vector as ground truth as well as methods that
do not. It is clear that whenever ground truth normal vectors
are not available, DiGS presents a significant improvement
and yields comparable results to normal based methods.

Ablation study. We investigate the effects of several
design choices made for DiGS and report the averages over
all shapes in the dataset in Table 7 and individual shapes in
Table 8. First we investigate the influence of the annealing
function τ . We compare between the case of

1. No annealing:
τ = 1. (42)

2. Linear annealing:

τLin(t0, t1, τ1) =


1 t < t0

1 + (τ1 − 1) (t−t0)
t1−t0

t0 ≤ t ≤ t1

τ1 t > t1
(43)

3. Step annealing:

τStep(t0, τ1) =

{
1 t < t0

τ1 t ≥ t0
(44)

GT Scans
Method dC dH dC⃗ dH⃗

anchor

SIREN wo n 0.72 10.98 0.11 1.27
DiGS l1 0.33 8.71 0.11 2.52
DiGS l2 0.43 8.24 0.10 2.23

DiGS no-decay 0.35 8.84 0.12 4.38
DiGS lin-decay 0.33 8.71 0.10 2.05

DiGS curv 0.78 11.63 0.13 1.21
DiGS l1 MFGI 0.29 7.19 0.11 1.17

daratech

SIREN wo n 0.21 4.37 0.09 1.78
DiGS l1 0.21 3.50 0.07 1.81
DiGS l2 0.20 3.47 0.07 1.78

DiGS no-decay 0.20 3.35 0.09 1.79
DiGS lin-decay 0.19 2.97 0.07 1.77

DiGS curv 0.22 4.27 0.12 1.76
DiGS l1 MFGI 0.20 3.72 0.09 1.80

dc

SIREN wo n 0.34 6.27 0.06 2.71
DiGS l1 0.15 2.25 0.06 2.76
DiGS l2 0.19 4.04 0.06 2.76

DiGS no-decay 0.16 2.58 0.07 2.78
DiGS lin-decay 0.16 2.72 0.06 2.71

DiGS curv 0.16 1.76 0.08 2.82
DiGS l1 MFGI 0.15 1.70 0.07 2.75

gargoyle

SIREN wo n 0.46 7.76 0.08 0.68
DiGS l1 0.17 5.12 0.08 0.81
DiGS l2 0.17 5.02 0.08 0.75

DiGS no-decay 0.18 5.18 0.09 3.10
DiGS lin-decay 0.17 5.09 0.08 0.81

DiGS curv 0.19 3.90 0.12 1.30
DiGS l1 MFGI 0.17 4.10 0.09 0.92

lord quas

SIREN wo n 0.35 8.96 0.06 0.65
DiGS l1 0.12 2.77 0.06 0.94
DiGS l2 0.25 5.12 0.06 0.85

DiGS no-decay 0.13 2.30 0.06 0.85
DiGS lin-decay 0.13 2.59 0.06 0.88

DiGS curv 0.14 2.61 0.07 0.75
DiGS l1 MFGI 0.12 0.91 0.06 0.70

Table 8. DiGS ablation study on the Surface Reconstruction
Benchmark. We compare design choices such as annealing
method (linear, step and no annealing), divergence term penalties
(L1 vs L2), initialization method (MFGI vs SIREN) and curvature
ground truth. We use the Chamfer dC and Hausdorff distance dH
metrics.

Here t0 and t1 are expressed as a fraction of training iter-
ations. In our experiments we used the following values:
(t0, t1, τ1) = (0.5, 0.75, 0). Results show that annealing
improves performance with little difference between linear
and step annealing.

We also investigate the choice of penalty function over
the divergence term (with step decay) and compare between
L1 and L2. Here, L1 allows for sparse spatial locations to
have high divergence (which is desired because there may
be some source or sink point in the gradient vector field)
while L2 provides an average low value over the volume.
As expected, the results show an advantage for using L1

penalty on the divergence.
Furthermore, we evaluate the second order supervision

approach presented in Section A.1.4. For that, we estimate
the mean curvature using DeepFit [5] (a recent state-of-the-
art method for estimating normals and curvatures) and intro-
duce the mean curvature as ground truth information during
training. The results show that, surprisingly, curvature su-
pervision does not provide any benefit. This is due to the



noisiness and local support dependency of curvature esti-
mation which may have over smoothed or jittery values that
make training inconsistent.

Finally, we investigate the effect of the multi-frequency
geometric initialization (with step decay and L1 penalty)
and show that it produces consistently better performance
than all other ablations. This variant is denoted throughout
the paper as DiGS, i.e., L1 penalty on the divergence term
with step decay and MFGI (Section 4). Note that all abla-
tions were trained without normal vector information.

Use of DiGS Loss with other activation functions.
Our divergence loss is general and can be applied to any net-
work that has second order derivatives defined everywhere.
Note that this means it cannot be used with ReLU activa-
tions, though we can use smooth approximations such as
the SoftPlus activation function (which IGR [17] uses).
However, our loss is targeted at high frequency architectures
such as SIRENs. A drawback of such architectures is the
trade off between high fidelity detail and ghost geometries,
especially without normal vector supervision. Our loss is
particularly beneficial to alleviate this trade-off.
We experimented with using our loss paired with SoftPlus
and found that it does not provide a boost in performance
since the network is already biased towards low frequency
solutions (performance reduction of 0.99 dC , and 6.34 dH
on SRB) which SIREN wo n outperforms even without the
divergence loss performance boost.

A.3.4 Surface reconstruction on ShapeNet

Implementation details. We use the preprocessing and
evaluation method from Williams et al. [45]. They first
preprocess using the method from Mescheder et al. [29],
then report on the first 20 shapes of the test set for each
shape class. The preprocessing extracts ground truth surface
points from the shapes of ShapeNet v1 [15], and extracts
random samples within the space with their labelled occu-
pancy values. The evaluation method uses the ground truth
points to calculate squared Chamfer distance, and uses the
labelled random samples to calculate IoU. Note that the ini-
tial ShapeNet data has inconsistent normal orientation and
many non-manifold surfaces due to its nature as CAD mod-
els, and this preprocessing helps orient the normals and re-
move most of the non-manifold surfaces.

For our method, given the input point cloud from the pre-
processing, we continue as we did for SRB (Section A.3.3).
We report the values for SPSR [23], IGR [17], SIREN [37],
FFN [39] and NSP [45] from Williams et al. [45]. We re-
port the results for SIREN wo n [37] and SAL [2] using
their code.

Additional quantitative results. We give the break-
down of squared Chamfer distance and IoU per shape class
in Table 9. As with the summary over all shape classes,

for the individual breakdowns we can see that with squared
Chamfer distance we get better means and medians without
normals, and with normals we get better medians but often
not better means. A particular class to note is loudspeaker, it
is the only class that we do not get better medians for when
comparing with normals, and we can see that it does much
worse with normals than without. As stated in the main
paper, we find that this is due to there being significant in-
ternal ghost geometry due to trying to match the internal
parts of the loudspeakers, and having normal vector super-
vision causes even more of such ghost geometry. For IoU
we do similarly: we get better means means and medians
without normals, but with normals we get better medians
but sometimes not better means.

Additional qualitative results. We show additional vi-
sualisations in Figure 19 and Figure 20. A comparison be-
tween the ground truth mesh, DiGS, SIREN wo n, SAL and
NSP is done for a shape from each shape class. SIREN wo
n and SAL, which do not use normal information, are able
to reconstruct the shapes, but the former has a lot of ghost
geometry while the latter is overly smoothened or missing
thin surfaces. On the other hand, DiGS is able to perform
on par with the best method with normal information, NSP,
where failure cases are usually extra thin surfaces.

A.3.5 Scene Reconstruction

In Section 6.1 we presented qualitative results for scene re-
construction. Attached to this supplemental material, we
provide a low resolution video depicting the scene from
multiple angles. A high resolution video is available an ex-
ternal URL. For this task we use eight layers with 512 units
and train on the scene from Sitzmann et al. [37] which in-
cludes 10M oriented points. We train for 100K iterations,
sampling random 15K points in each iteration.

A.3.6 Shape Space Learning

We use the setup and evaluation procedure of
Gropp et al. [17]. The DFaust dataset [10] has scans
of 10 humans, each of which do multiple action sequences
and have a scan at different points during the sequence.
The data set include both the scan done, which are high-
resolution triangle soups, and their own registration for
the complete mesh of the human which they gained from
using extra data (e.g., colour) and the temporal information
during the action sequence.

We use the random split setting of Gropp et al. [17],
a 75%-25% split between a significant subset of all scans
(8566 scans). For the shapespace experiment, a single
model is trained on all training scans. During training, a
latent code is assigned to each action sequence of each hu-
man, which is allowed to be trained. During test time the
latent code for the test shape is optimised using the input

https://drive.google.com/file/d/1CuP8KN93JpzWY-597g0945r5VCIEOi3D/view?usp=sharing


point cloud data, after which the optimised latent code is
used to evaluate the full shape on a 512× 512× 512 grid.

Following the evaluation procedure of Gropp et al. [17]
we report the mean and median of the total one-sided Cham-
fer distances between the reconstruction and the input scans,
and the reconstructions and the ground truth.

For our network we use a 8 layer SIREN with hidden
layers of dimension 256. We also use 256 dimensional la-
tent codes. At test time we optimise for the latent vectors
for 800 iterations using Adam with a learning rate of 10−3.
The latent code and the original input ((x, y, z) coordinates)
are concatenated together for a 259 dimensional input, and
the latent codes are intialised to zero. As is standard in an
autodecoder we use latent code regularization [34], with a
scaling weight of 1.0.

For IGR we use their model (autodecoder with 8 lay-
ers, hidden dimension 512, latent dimension 256) and use
the same latent optimisation procedure. For the version
with normals we use their trained weights, for the version
without normals we train their network using their provided
training script.
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Figure 19. Qualitative results on ShapeNet. One shape from each class is shown compared to other methods.



lo
ud

sp
ea

ke
r

ri
fle

so
fa

ta
bl

e
te

le
ph

on
e

w
at

er
cr

af
t

Ground Truth Our DiGS SIREN wo n SAL NSP

Figure 20. Qualitative results on ShapeNet. One shape from each class is shown compared to other methods.



Squared Chamfer

All airplane bench cabinet car
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 6.66e-4 1.07e-4 4.69e-3 3.04e-4 1.74e-4 3.47e-4 4.48e-4 2.58e-4 4.33e-4 1.56e-4 9.39e-5 1.23e-4 2.60e-4 2.82e-4 9.80e-5
SIREN 1.03e-4 5.28e-5 1.93e-4 4.15e-5 3.87e-5 8.57e-6 9.63e-5 8.12e-5 5.41e-5 1.51e-4 6.69e-5 1.77e-4 1.39e-4 9.07e-5 1.03e-4
NSP 5.36e-5 4.06e-5 3.64e-5 3.55e-5 3.44e-5 2.45e-6 5.66e-5 4.82e-5 2.09e-5 6.98e-5 4.69e-5 4.34e-5 8.21e-5 7.18e-5 3.60e-5
DiGS + n 2.74e-4 2.32e-5 9.90e-4 1.05e-5 9.29e-6 3.93e-6 3.11e-5 2.17e-5 3.98e-5 6.92e-4 4.28e-5 1.10e-3 3.96e-4 3.87e-5 1.52e-3
SIREN wo n 3.08e-4 2.58e-4 3.26e-4 2.42e-4 2.50e-4 5.92e-5 1.93e-4 1.67e-4 9.09e-5 3.16e-4 2.72e-4 1.72e-4 2.67e-4 2.58e-4 4.78e-5
SAL 1.14e-3 2.11e-4 3.63e-3 5.98e-4 2.38e-4 9.22e-4 3.55e-4 1.71e-4 4.26e-4 2.81e-4 1.86e-4 1.81e-4 4.51e-4 2.74e-4 4.36e-4
Our DiGS 1.32e-4 2.55e-5 4.73e-4 1.32e-5 1.01e-5 7.56e-6 7.26e-5 2.21e-5 1.74e-4 4.07e-4 4.45e-5 9.25e-4 7.89e-5 3.97e-5 1.10e-4

chair display lamp loudspeaker rifle
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 9.25e-4 9.88e-5 3.11e-3 9.99e-5 7.49e-5 8.44e-5 1.72e-3 1.28e-4 6.24e-3 3.77e-3 1.15e-4 1.49e-2 9.62e-5 5.29e-5 1.25e-4
SIREN 1.05e-4 6.34e-5 1.18e-4 6.98e-5 5.68e-5 3.86e-5 6.26e-5 5.07e-5 3.35e-5 2.77e-4 6.88e-5 5.54e-4 3.62e-5 3.50e-5 4.03e-6
NSP 5.62e-5 4.21e-5 4.32e-5 4.36e-5 3.99e-5 1.28e-5 4.19e-5 3.91e-5 1.00e-5 8.41e-5 4.54e-5 7.54e-5 3.26e-5 3.15e-5 2.79e-6
DiGS + n 8.55e-5 2.43e-5 1.43e-4 8.67e-4 2.52e-5 2.45e-3 3.34e-5 1.70e-5 4.80e-5 1.05e-3 7.13e-4 1.14e-3 4.80e-6 4.73e-6 1.74e-6
SIREN wo n 2.63e-4 2.60e-4 1.31e-04 2.49e-4 2.20e-4 8.45e-05 6.10e-4 3.49e-4 1.04e-03 3.29e-4 3.04e-4 1.31e-04 5.44e-4 5.56e-4 1.44e-04
SAL 1.28e-3 2.92e-4 2.05-3 2.56e-4 8.86e-5 4.99-4 5.86e-3 1.29e-3 9.35-3 4.04e-4 2.63e-4 4.50-4 2.18e-3 1.15e-4 5.17-3
Our DiGS 3.72e-4 2.73e-5 1.05e-3 3.16e-5 2.53e-5 2.32e-5 1.70e-4 2.18e-5 3.96e-4 1.18e-4 6.18e-5 2.15e-4 9.10e-6 5.26e-6 1.03e-5

sofa table telephone watercraft
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 2.86e-4 1.02e-4 5.30e-4 3.40e-4 1.95e-4 3.33e-4 1.03e-4 4.43e-5 1.54e-4 1.47e-4 1.12e-4 1.23e-4
SIREN 7.88e-5 6.99e-5 3.90e-5 1.92e-4 8.32e-5 2.32e-4 3.88e-5 3.58e-5 9.64e-6 5.57e-5 4.21e-5 2.95e-5
NSP 5.11e-5 4.80e-5 1.24e-5 6.60e-5 4.88e-5 4.17e-5 3.34e-5 3.19e-5 3.60e-6 4.41e-5 3.84e-5 1.42e-5
DiGS + n 6.83e-5 2.77e-5 9.39e-5 1.68e-4 3.26e-5 3.50e-4 1.15e-4 1.75e-5 3.05e-4 2.77e-5 1.57e-5 3.30e-5
SIREN wo n 2.72e-4 2.66e-4 6.74e-05 2.29e-4 2.38e-4 8.40e-05 2.10e-4 1.86e-4 6.60e-05 2.97e-4 2.43e-4 1.26e-04
SAL 3.75e-4 1.93e-4 4.31-4 1.82e-3 5.10e-4 4.31-3 1.04e-4 6.81e-5 7.99-5 8.08e-4 2.06e-4 1.75-3
Our DiGS 5.76e-5 3.27e-5 5.39e-5 2.94e-4 2.98e-5 6.76e-4 1.77e-5 1.74e-5 4.49e-6 6.10e-5 2.43e-5 9.03e-5

IoU

All airplane bench cabinet car
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 0.8102 0.8480 0.1519 0.7851 0.8193 0.0977 0.5812 0.5923 0.2487 0.8709 0.8857 0.0924 0.8026 0.8664 0.1300
SIREN 0.8268 0.9097 0.2329 0.8045 0.9080 0.2696 0.6109 0.7442 0.3258 0.8706 0.9263 0.1621 0.8036 0.9241 0.2753
NSP 0.8973 0.9230 0.0871 0.8165 0.8998 0.1551 0.7872 0.8370 0.1236 0.9274 0.9291 0.0422 0.8954 0.9288 0.0740
DiGS + n 0.9200 0.9774 0.1992 0.9693 0.9718 0.0151 0.9428 0.9655 0.0644 0.8323 0.9867 0.3076 0.9147 0.9754 0.2126
SIREN wo n 0.3085 0.2952 0.2014 0.2248 0.1735 0.1103 0.4020 0.4231 0.1953 0.3014 0.2564 0.1275 0.3336 0.3030 0.0997
SAL 0.4030 0.3944 0.2722 0.1908 0.1693 0.0955 0.2260 0.2311 0.1401 0.6923 0.7224 0.1637 0.6261 0.6526 0.1525
Our DiGS 0.9390 0.9764 0.1262 0.9613 0.9577 0.0164 0.9061 0.9536 0.1413 0.9261 0.9853 0.2137 0.9455 0.9765 0.0699

chair display lamp loudspeaker rifle
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 0.8049 0.8320 0.1022 0.8741 0.8917 0.0533 0.7865 0.8259 0.1318 0.8867 0.9324 0.1017 0.8279 0.8267 0.0542
SIREN 0.8721 0.8807 0.0495 0.9014 0.9146 0.0440 0.8392 0.8995 0.2025 0.8458 0.9618 0.2404 0.7329 0.9132 0.3662
NSP 0.8841 0.9034 0.0825 0.9309 0.9316 0.0251 0.9037 0.9178 0.0512 0.9323 0.9627 0.0599 0.9299 0.9313 0.0215
DiGS + n 0.9719 0.9759 0.0140 0.8367 0.9855 0.3485 0.9024 0.9637 0.1991 0.8798 0.9747 0.2424 0.9569 0.9571 0.0207
SIREN wo n 0.4208 0.3748 0.2322 0.3566 0.3123 0.1790 0.3055 0.2573 0.2598 0.2229 0.1724 0.1575 0.0265 0.0092 0.0554
SAL 0.2589 0.1491 0.2213 0.5067 0.5801 0.2474 0.1689 0.0698 0.1994 0.6702 0.7264 0.1976 0.2835 0.2821 0.1530
Our DiGS 0.9082 0.9650 0.1523 0.9839 0.9886 0.0102 0.8776 0.9646 0.1943 0.9632 0.9851 0.0978 0.9486 0.9567 0.0281

sofa table telephone watercraft
Method Mean Median Std Mean Median Std Mean Median Std Mean Median Std
IGR 0.8891 0.9139 0.0708 0.6852 0.7260 0.2004 0.9148 0.9372 0.0639 0.8146 0.8445 0.0931
SIREN 0.9251 0.9411 0.0390 0.7280 0.8058 0.2089 0.9427 0.9514 0.0310 0.8722 0.9279 0.1990
NSP 0.9387 0.9473 0.0264 0.8414 0.8427 0.0534 0.9569 0.9625 0.0260 0.9207 0.9231 0.0402
DiGS + n 0.9624 0.9859 0.0696 0.9284 0.9784 0.1743 0.8880 0.9855 0.2935 0.9747 0.9789 0.0168
SIREN wo n 0.3397 0.3444 0.1206 0.3797 0.3603 0.1528 0.3778 0.3806 0.2590 0.3190 0.3007 0.1877
SAL 0.4844 0.4530 0.1404 0.0965 0.0320 0.1502 0.6025 0.6704 0.2203 0.4170 0.4728 0.2367
Our DiGS 0.9572 0.9807 0.0896 0.8943 0.9720 0.1996 0.9854 0.9876 0.0071 0.9522 0.9735 0.0504

Table 9. Extended results for surface reconstruction on ShapeNet [15]. For each shape class, and all shapes together, we report the squared
Chamfer distance (first three tables) and the IoU (last three tables) to the ground truth mesh. Methods above the line use normal supervison,
and methods below do not.
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Figure 21. Qualitative results for the shape space experiment on the DFaust dataset [10]. Both methods with normals, IGR and DiGS+n,
manage to capture the shape of the humans. IGR has more detail, but has a lot of ghost geometries (all columns), sometimes changes
orientation that is far away from the mean of the dataset (column 4) and often misses large surfaces such as forearms (columns 3 and
5). DiGS+n captures the correct surface with minimal ghost geometry and few missing regions, but oversmooths fine details (e.g. facial
features). On the other hand, for methods without normals (DiGS and IGR wo n), only DiGS is able to learn multiple human shapes
whereas IGR wo n is not able to learn at all. DiGS also has large ghost geometries and oversmooths the human surfaces, but manages to
capture more key regions compared to IGR.


