
Stereoscopic Universal Perturbations across Different Architectures and Datasets
SUPPLEMENTARY MATERIALS

Zachary Berger†

UCLA Vision Lab
zackeberger@g.ucla.edu

Parth Agrawal†

UCLA Vision Lab
parthagrawal24@g.ucla.edu

Tian Yu Liu
UCLA Vision Lab

tianyu139@g.ucla.edu

Stefano Soatto
UCLA Vision Lab
soatto@cs.ucla.edu

Alex Wong
UCLA Vision Lab

alexw@cs.ucla.edu

A. Summary of Contents
We begin with a discussion on the existence of adver-

sarial and universal perturbations for calibrated stereo in
Sec. B. In Sec. C, we illustrate our training pipeline in
Fig. 1. In Sec. D we discuss implementation details, hyper-
parameters, time and space requirements for training per-
turbations, fine-tuning with adversarial data augmentation,
and retraining variants of AANet, DeepPruner, and PSM-
Net. We also describe the error metrics used throughout the
paper. In Sec. E, we include results for KITTI 2012 (omitted
in the main text) on the performance on each stereo network
against our stereoscopic universal perturbations (SUPs). We
also present additional analyses on the effect of SUPs on
scene geometry, on robustness of semantic classes, and on
correlation between clean and perturbed features extracted
for a given image and registered points between two im-
ages. In Sec. F we provide a discussion on the formulation
of deformable convolutions and their use in stereo matching
network. In Sec. G, we discuss the sensitivity of the pro-
posed SUPs to number of training samples, and in Sec. H,
the limitations of the SUPs as an attack and the proposed ar-
chitectural designs to increase robustness of stereo networks
against them. In Sec. I, we discuss potential negative im-
pact of our work and how we can mitigate them. Finally, in
Sec. J, we conclude with qualitative comparisons between
perturbations crafted for the full image and the proposed
64 × 64 tiles. We also include additional qualitative re-
sults on the KITTI 2012, KITTI 2015 and FlyingThings3D
datasets across all norms and transferability experiments.

B. On the Existence of Adversaries for Stereo
Adversarial perturbations exist for a number of tasks

from classification [9, 25], object detection [36], even sin-
† denotes authors with equal contributions.
Code: github.com/alexklwong/stereoscopic-universal-perturbations

gle image depth prediction [29]. While it may seem that
they should exist for calibrated stereo, there is a qualita-
tive difference between stereo and other single image based
tasks where adversarial perturbations have been observed –
such are purely inductive tasks: Without training data and
a strong inductive prior, a single image does not enable in-
ference of depth or labels of objects. The likelihood is flat
and adversarial perturbations have free reign to modify the
outcome of inference, even to control the network to yield a
desired 3D scene as outcome [29]. Not so for stereo: binoc-
ular disparity is sufficient to infer depth wherever the im-
age gradient is non-trivial, without any need for induction
from a training set. One is not free to change the outcome
of inference without observable changes in the likelihood.
So, the fact that adversarial perturbations exist, i.e. Stere-
opagnosia [33], is indeed surprising for stereo, and that they
would survive architectural changes even more so.

C. Training Pipeline

In Fig. 1 we visualize the training pipeline for one iter-
ation of our algorithm for crafting universal perturbations
for stereo. Let fθ(xL, xR) ∈ RH×W be a pretrained stereo
network that estimates the disparity between the left xL and
right xR images of a stereo pair. Let (vL, vR) ∈ Rh×w be a
left and right perturbation subject to h | H and w | W .
First, we apply (vL, vR) to (xL, xR) over the entire im-
age space, by evenly repeating the perturbation vI across
xI with no overlap for I ∈ {L,R}. we then compute the
gradient of the stereo network’s loss ℓ(fθ(·), ygt) with re-
spect to each image xI in the stereo pair:

g
(n)
I = ∇

x
(n)
I

ℓ(fθ(x̂
(n)
L , x̂

(n)
R ), y(n)). (1)

For a given stereo pair (xL, xR), we take the mean over the
gradient with respect to the image gI for all tiles:

1



Figure 1. Training pipeline. Perturbations are tiled across their respective images. We take mean over the gradient with respect to each
image for all tiles, which is used to update the each of the perturbations.

ḡ
(n)
I =

h · w
H ·W

∑
i,j

g
(n)
I (i, j). (2)

This aggregated result can then be used to update the tile
perturbation vI for I ∈ {L,R}.

D. Implementation Details
Datasets. We optimize our perturbations on the KITTI

dataset [7], which contains ≈47K 376 × 1240 resolution
stereo pairs of real-world outdoor driving scenarios. We
evaluate them on the KITTI 2012, KITTI 2015 [17], and
Scene Flow [16] stereo datasets using AANet [37], Deep-
Pruner [5], and PSMNet [2]. Due to computational limita-
tions, we resize all images to 256×640 and adjusted dispar-
ity maps accordingly. Hence, the baseline error is slightly
higher than those reported by each method.

KITTI 2012 contains 194 stereo pairs with sparse
ground-truth disparities. KITTI 2015 contains 200 stereo
pairs with high quality ground-truth disparity maps. Images
in both datasets have dimension 376× 1240. Following the
KITTI validation protocol, KITTI 2012 is divided into 160
for training and 34 for validation and KITTI 2015 is divided
into 160 for training and 40 for validation. We do not use
any samples from KITTI 2012 or KITTI 2015 to optimize
our perturbations, and only evaluate on the validation sets.

We demonstrate that our perturbations can generalize
across datasets by testing them on Scene Flow [16] – a syn-
thetic dataset comprised of 35K training and 4370 testing
540 × 960 resolution images paired with ground-truth dis-
parity maps. Like KITTI 2012 and 2015, we do not opti-
mize our perturbations on Scene Flow and simply leverage
their testing set, FlyingThings3D, in our evaluation.

We used PyTorch to implement our approach. We em-
ployed the publicly available code and pretrained models
of AANet, DeepPruner, and PSMNet. We note that while
AANet and PSMNet released separate pretrained models
for KITTI 2012 and KITTI 2015, DeepPruner released one
model trained on both datasets. All three stereo networks
released pretrained models for Scene Flow. We note that

the pretrained model on Scene Flow of PSMNet, provided
by the authors, did not reproduce the results in their paper.
We obtained D1-error > 30% and EPE > 4px when run-
ning on the Scene Flow test set. This is a known issue in
their code repository. Hence, we fine-tuned the pretrained
PSMNet model on Scene Flow, lowering the baseline D1-
error to 5.57% and the EPE to 1.27px, and used this model
for our experiments. We note that DeepPruner provided
two model variants, DeepPruner-Best and DeepPruner-Fast.
Additionally, AANet provided AANet and AANet+. We
used AANet and DeepPruner-Best for all of our experi-
ments. To analyze the robustness of semantic classes, we
used the implementation and pretrained model of SDCNet
[44], a segmentation network for driving scenes.

Hyper-parameters. We considered the upper norms of
ϵ ∈ {0.002, 0.005, 0.01, 0.02}. We searched over learning
rates of α ∈ {0.00005, 0.0001, 0.0002, 0.0004, 0.0008}.
We optimized SUPs on each network using square tiles of
16, 32, 64, and 128, and the full image size 256 × 640. As
searching the full space of tile sizes would be intractable,
we chose these as representative tiles at different scales. We
omitted results for the 128×128 perturbation from the main
paper due to space constraints, but describe them in Sec. E.

Training perturbations. We used an Nvidia GTX
1080Ti on a standard workstation for all of our experiments.
To optimize SUPs, we iterated through the KITTI training
set one time. Doing so took ≈ 5.5hr to craft SUPs for
AANet, ≈ 7.0hr for DeepPruner, and ≈ 12.0hr for PSM-
Net. Our procedure took ≈ 4.3GB of GPU memory for
AANet, ≈ 4.8GB for DeepPruner, and ≈ 8.8GB for PSM-
Net. As the SUPs are additive, they can be applied to an
image in real time. We note that Alg. 1 uses zero initial-
ization for the perturbations. When using the estimated dis-
parity from the clean images as pseudo ground truth, this
would yield no training signal. Thus, we added zero mean
Gaussian noise to the pseudo ground truth.

Fine-tuning stereo models with adversarial data aug-
mentation. To fine-tune the stereo models with adver-
sarial data augmentation, we used 4 Nvidia GTX 1080Ti.



The models were fine-tuned for 1000 epochs on KITTI
2015 with a batch size of 8. SUPs with upper norm
ϵ ∈ {0.002, 0.005, 0.01, 0.02} were selected at random and
added to the training images with 50% probability. The
learning rate was initially set to 1 × 10−5, but switched to
5 × 10−6 and 1 × 10−6 after the 250th and 500th epoch,
respectively. It took ≈ 9hr, ≈ 11hr, and ≈ 10hr to fine-tune
AANet, DeepPruner, and PSMNet, respectively. We note
that on a standard workstation, this process can take up to a
week to complete.

Training stereo models with deformable convolu-
tions. We trained a version of (i) PSMNet and (ii) Deep-
Pruner from scratch, each with 25 deformable convolu-
tions in the encoder. We also trained a version of (iii)
PSMNet with 6 deformable convolutions, and a version of
(iv) AANet without deformable convolutions. Four Nvidia
GTX 1080Ti GPUs were used to train each variant, which
took ≈ 4 days per model.

Both PSMNet models were trained with a batch size of
12, while DeepPruner was trained with a batch size of 16.
PSMNet was trained on Scene Flow for 20 epochs, then
fine-tuned on KITTI 2015 for 500 epochs. DeepPruner was
first trained on Scene Flow for 64 epochs, then fine-tuned on
a mixture of KITTI 2012 and KITTI 2015 for 1040 epochs.
AANet was first trained on Scene Flow with a batch size of
22 for 64 epochs, fine-tuned on a mixture of KITTI 2012
and KITTI 2015 with a batch size of 12 for 1000 epochs,
then fine-tuned on KITTI 2015 with a batch size of 8 for
1000 epochs. Note that DeepPruner is equivalent to PSM-
Net with an explicit matching module, so we sometimes re-
fer to “DeepPruner” as “PSMNet with explicit matching” in
our experiments.

Evaluation metrics. To evaluate the robustness of each
stereo network, we use the official KITTI D1-error (the av-
erage number of erroneous pixels in terms of disparity) for
KITTI 2012 and KITTI 2015 experiments:

δ(i, j) = |fθ(·)(i, j)− ygt(i, j)|, (3)

d(i, j) =

{
1 if δ(i, j) > 3, δ(i,j)

ygt(i,j)
> 5%,

0 otherwise
(4)

D1-error =
1

∥Ωgt∥
∑

i,j∈Ωgt

d(i, j), (5)

and the official Scene Flow end-point-error (EPE) metrics
on FlyingThings3D for generalization experiments:

EPE =
1

∥Ωgt∥
∑

i,j∈Ωgt

δ(i, j), (6)

where Ωgt is a subset of the image space Ω with valid
ground-truth disparity annotations, ygt > 0.

E. Experiments and Results
In the main paper, we justified our use of a 64× 64 sized

perturbation for our experiments. Here we expand on our
search of tile sizes. We omitted results on KITTI 2012 in
the main paper due to space constraints, but present them in
this section. Similarly, in the main paper, we only showed
results on AANet for our experiments on the effect of SUPs
on scene geometry, robustness of semantic classes, and ef-
fect on the feature extractor. Here, we also present results
for SUPs trained for DeepPruner and PSMNet.

Comparing tile sizes. We optimized SUPs on KITTI
for AANet at each tile size and attacked AANet (Fig. 2-
(a)), DeepPruner (Fig. 2-(b)), and PSMNet (Fig. 2-(c)). The
16 × 16 and 32 × 32 tiles consistently performed worst,
which justifies our choice not to explore smaller tiles. The
128× 128 tile performed negligibly better than the 64× 64
tile. However, Fig. 2-(d) shows that the 64 × 64 tile gener-
alizes better than the 128× 128 perturbation across all net-
works on FlyingThings3D. For SUPs with ϵ = 0.02, 64×64
achieves 46.14% error on AANet, 34.87% on DeepPruner
and 31.93% on PSMNet, while 128×128 achieves 40.84%,
27.89%, and 29.33% respectively. As demonstrated in the
main paper, the full-size perturbations do worse than both,
at 36.09% error on AANet, 23.28% on DeepPruner, and
25.35% on PSMNet. We note that, in choosing the tile
size, there is a clear trade-off between the performance on
the model and dataset for which SUPs are optimized and
the generalization to novel architectures and data distribu-
tions. For the purpose of universal perturbations that trans-
fer across architectures and datasets, we choose the 64× 64
tile size. However, given our results, we leave it up to the
user to decide which tile size best suits their use case.

Generalization across architectures and data. We op-
timized three sets of 64 × 64 SUPs on KITTI for AANet,
DeepPruner, and PSMNet, respectively. In Fig. 3, we at-
tack each network with each set of SUPs on three datasets:
KITTI 2012 and 2015 (real datasets of outdoor driving sce-
narios), and Flyingthings3D (synthetic dataset of random
“flying” objects). We report D1-error for KITTI 2012, and
2015, and EPE for FlyingThings3D. In the main paper, we
omitted results for KITTI 2012 due to space constraints, but
present them here.

In Fig. 3-(a), we add the perturbations optimized for each
network to the input stereo pairs from KITTI 2015 for all
three networks. Here, KITTI 2015 is a held out data split
from KITTI so the distribution of scenes follow that of the
training set. When a set of perturbations are applied to the
network for which they are optimized, as expected, they
tend to be the most successful at corrupting the outputs of
the network. We note that AANet (red lines) is consistently
more robust against attacks and PSMNet (blue lines) is con-
sistently more susceptible.

In Fig. 3-(b), we add the perturbations optimized for each



Figure 2. Comparing tile sizes. We optimized square tile perturbations with size 16, 32, 64, 128 on KITTI for AANet. (a, b, c) the smaller
16× 16 and 32× 32 tiles perform worst. (a) When applied to inputs from the dataset they are optimized on, the largest tile size 128× 128
marginally outperforms 64 × 64. However, (d) shows that 64 × 64 consistently generalizes the best from KITTI to FlyingThings3D for
all three architectures. There exists a trade-off between performance on the dataset on which a set of perturbations are optimized and their
ability to transfer across models and datasets, where a smaller tile size e.g. 64×64 can generalize better, but a larger tile size e.g. 128×128
may deal more damage to the network and dataset for which the perturbations are optimized.

Figure 3. Generalization across architectures and datasets. We optimized stereoscopic universal perturbations on AANet, DeepPruner and
PSMNet for KITTI (real dataset of outdoor driving scenario) and tested them on three datasets. We measure D1-error for KITTI 2012 and
2015, and EPE for FlyingThings3D. For all three networks, we add the perturbations optimized for each network to input stereo pairs from
(a) KITTI 2015, (b) KITTI 2012, and (c) FlyingThings3D. The proposed universal perturbations optimized for a single network on KITTI
can fool different network architectures across multiple datasets.

network to input stereo pairs from KITTI 2012 for all three
networks. Like KITTI 2015, KITTI 2012 is also a held out
data split from KITTI, but contains different objects popu-
lating the scene. We observe similar trends as KITTI 2015,
where AANet is still the most robust and PSMNet the least
robust. We note that for all KITTI 2012 and 2015 experi-
ments, all stereo models are trained on KITTI.

In Fig. 3-(c), we test the generalization of our pertur-
bations across different data distributions. To this end, we

add the perturbations optimized for each network to input
stereo pairs from FlyingThings3D for all three networks.
Here, FlyingThings3D is a synthetic dataset comprised of
random “flying” objects where the scene distribution is dif-
fers greatly from that of KITTI. For this experiment, all of
the stereo models are trained on Scene Flow datasets, which
consists of Monkaa, Driving, and FlyingThings3D. Despite
being optimized for a single network on KITTI, each pair of
perturbations are able fool different network architectures



Figure 4. Distribution of disparities before and after adding perturbations. (a) Distribution of estimated disparities for AANet, DeepPruner
and PSMNet on clean (no added perturbations) stereo pairs. Most disparities are concentrated at 2 pixels. Adding perturbations optimized
for (b) AANet, (c) DeepPruner, and (d) PSMNet on KITTI to all three models. Disparities shift from 2 pixels to ≈50 pixels in (b), and to
≈40 and ≈60 pixels in (c) and (d). We note that in all cases, the disparities grow larger, meaning that the estimated depth grows smaller,
so the perceived distances to objects populating the scene are closer than they should be.

Figure 5. Quantitative evaluation on KITTI 2015, D1-error for each semantic class. We use SDCNet, an off-the-shelf semantic segmen-
tation network to partition the image domain of stereo pairs from KITTI 2015 into semantic classes. We show the effect of perturbations
optimized on KITTI on different classes for (a) AANet, (b) DeepPruner, and (c) PSMNet. Each semantic class exhibits a different level of
robustness against adversaries. However, there are some common trends. For all perturbations and across all networks, the classes that are
most susceptible are “building”, “vegetation”, “sky” and “road”. The least susceptible are “car”, “person”, “pole” and “traffic sign”.

trained on different datasets comprised of different scene
distributions in a different domain. To the best of our knowl-

edge, we are the first to demonstrate stereoscopic universal
perturbations that generalize across architectures and data.



Figure 6. Effect on clean and perturbed left and right feature maps. Perturbations optimized for AANet, DeepPruner and PSMNet were
added to KITTI 2015 stereo pairs. Correlation was computed between the (a) clean and perturbed left stereo images, and (b) clean and
perturbed right stereo images. In both cases, the correlation decreased between the clean and perturbed feature maps. The perturbation
signal is amplified by the encoding function as it is fed through the layers in a forward pass.

Figure 7. Effect on corresponding left and right feature maps. Perturbations optimized for AANet, DeepPruner and PSMNet were added
to each stereo pair in KITTI 2015. (a) Correlation was computed between corresponding left and right clean features. Correlation was
then computed between corresponding left and right perturbed features, using a perturbation optimized for AANet (b), DeepPruner (c), and
PSMNet (d). The perturbed features become uncorrelated relative to the clean features. This suggests that universal perturbations cause
similar regions in the RGB domain to be dissimilar in the embedding space, resulting in incorrect correspondences.

Effect on scene geometry. In the main text, we showed
that the mode of the distribution of disparities shifts from
≈2 pixels to ≈50 pixels when each network is attacked by
SUPs optimized for AANet. To more effectively quantify
how SUPs affect the predicted scene geometry, we plot-
ted the distributions of disparity estimates for all networks
tested, where clean (no added perturbation) baseline dispar-
ities are shown in Fig. 4-(a) and disparities for perturbed
stereo pairs are shown in Fig. 4-(b,c,d). Specifically, we
consider the change in disparity distribution for SUPs opti-
mized and tested on the same network and SUPs optimized
on other networks. In Fig. 4-(b), we apply perturbations op-
timized for AANet, in Fig. 4-(c) DeepPruner, and in Fig. 4-
(d) PSMNet. We note that all of these experiments were
performed on the KITTI 2015 validation set.

As mentioned in the main text, there is a systemic in-
crease in the estimated disparities when perturbations are
added to the input stereo pairs; in other words, a decrease in

depth, where objects are perceived as closer than they really
are. While the general trend is present for all networks, the
effect is varied as SUPs optimized for AANet causes a sharp
mode at ≈50 pixels whereas SUPs optimized for PSMNet
and DeepPruner also create modes at ≈40 pixels and ≈60
pixels. While we do not conduct additional experiments to
determine the reason for this bias, we hypothesize that it
is induced by the dataset that the perturbations are trained
on and will leave this analysis to future works. Interest-
ingly, the same effect transfers to other datasets as well e.g.
KITTI 2012 and FlyingThings3D, where visualizations of
the output disparities are consistently closer than those es-
timated from clean images. Indeed, this shows that there
are common vulnerabilities across images not only within
a dataset, but across datasets and domains. We illustrate
this phenomenon in Fig. 1, Fig. 3 and Fig. 8 in the main
text, where larger disparities or smaller depths are depicted
as brighter (yellow) regions in the colormap. We also ob-



serve a similar phenomenon in the additional qualitative re-
sults provided below (see Fig. 12, Fig. 13, Fig. 14, Fig. 18,
Fig. 19, Fig. 20).

Robustness of semantic classes. In the main text, we
observed that different semantic classes exhibit different
levels of robustness against adversaries. We measured the
per class error of the disparities estimated by AANet when
attacked by a perturbation optimized for AANet. For com-
pleteness, we show the per class errors for each network
when attacked by adversaries optimized for AANet (Fig. 5-
(a)) DeepPruner (Fig. 5-(b)) and PSMNet (Fig. 5-(c)). To
this end, we use SDCNet [44], an off-the-shelf seman-
tic segmentation network to partition the image domain of
stereo pairs from KITTI 2015 into semantic classes. We
observe that each semantic class exhibits a different level
of robustness against adversaries. However, there are some
common trends across all the networks. Fig. 5 shows that
for all perturbations and across all networks, the classes that
are most susceptible are “building”, “vegetation”, “sky” and
“road”. The least susceptible are “car”, “person”, “pole”
and “traffic sign”. We note that the most robust object
classes tend to be those with rich textures. In contrast, the
least robust classes are those that tend to be comprised of
largely homogeneous regions e.g. “sky”, “road”. We hy-
pothesize that this is due to the nature of the correspon-
dence problem. Because stereo networks employ feature
matching as a measure of data fidelity, regions with suf-
ficiently exciting textures tend to have unique correspon-
dences; whereas, there exists inherent ambiguity in locating
correspondences in textureless, repeating patterns, and ho-
mogeneous regions. This leads to the network relying on
the regularizer or the prior (learned from data) to fill in the
gaps. The information of the regularizer is stored in the
weights or parameters of a network via the training process.
As the perturbation signal corrupts the activations of feature
maps on which the weights operate on, it is thus corrupting
the regularizer or prior, and so the prediction for textureless
and homogeneous regions is worse.

Effect on Feature Maps. In the main text, we discussed
the effect of stereoscopic universal perturbations (SUPs) on
the encoder, or embedding function, for AANet. Here we
show results for all three networks in Fig. 6. We added the
perturbations optimized for each network into stereo pairs
from KITTI 2015 and forwarded them through each net-
work. Similarly, we also fed clean stereo pairs without any
added perturbations into each network. The per layer ac-
tivations of the encoder, shared between the left and right
images, were extracted for clean and perturbed stereo pairs.
Correlation was then computed between the clean and per-
turbed left feature maps, and clean and perturbed right fea-
ture maps. Fig. 6-(a) shows the correlation between clean
and perturbed left image feature maps for each network,
while Fig. 6-(b) shows the same for the right image. In

Figure 8. Robustness to Image Perturbations. (a) Robustness of
PSMNet, PSMNet with 25 layers of deformable convolutions, (b)
DeepPruner, and DeepPruner with 25 layers of deformable convo-
lutions against different types of image corruptions.

both cases, the correlation decreases between the clean and
perturbed feature maps. This demonstrates that even though
the input perturbation is constrained to be some ϵ small, the
perturbation signal is amplified by the encoding function as
it is fed through the layers in a forward pass. In effect, this
can cause a network to output significantly different results.

However, stereo networks employ an explicit matching
mechanism. Even though the perturbations may cause the
clean and perturbed features to be different, as long as the
true corresponding (registered) pixels between the left and
right images are “close” in the embedding space, the cor-
rect disparity between the two images can be found. Fig. 7
shows that indeed the perturbations not only causes clean
and perturbed feature maps to be different, but also the cor-
responding registered left and right features to be different.
Specifically, Fig. 7-(a) shows that registered clean features
are well-correlated throughout all of the features maps in the
encoder. This is expected. However, Fig. 7-(b, c, d) shows
that left and right registered perturbed features become in-
creasing uncorrelated relative to the clean features as they
pass through the shared encoder. This suggests that our
universal perturbations cause similar regions in the RGB
domain to become dissimilar in the embedding space. As
registered points in the images are no longer similar, this
in turn fools the explicit matching modules to find incorrect
correspondences, resulting in the wrong disparity estimates.
We note that in both Fig. 6 and Fig. 7, the correlation of the
features of AANet increase from layers 20 to 30. This phe-
nomenon is present for all adversaries, and coincides with
the use of deformable convolution in AANet. We conjecture
that deformable convolutions may be related to the robust-
ness of AANet. Hence, we use this observation to motivate
the use of deformable convolutions (and explicit matching
modules like correlation or PatchMatch) as part of our pro-
posed architectural designs to increase robustness against
SUPs (see Sec. 5 in the main paper).

Robustness to Image Perturbations. In the main text,
we discussed the robustness of PSMNet and PSMNet with
25 DCs against common image corruptions i.e. lossy



(JPEG) compression, Gaussian, defocus and motion blur,
shot noise (Fig 10-(d)). As shown in Fig. 8-(a) and also
in Fig 10-(d), our design improves over PSMNet by an av-
erage of 70% to common image perturbations. Fig. 8-(b)
shows that DeepPruner (red), like PSMNet, is also suscep-
tible to noise and blurring. In the case of Gaussian blur with
a kernel size of 5 and a standard deviation of 1, the error in-
creases by as much as 131%. Our design of DeepPruner
with 25 DCs (blue) is significantly more robust across all
tested common image corruptions. There is an improve-
ment of 43% on gaussian blur and 37% on defocus blur.
Moreover, our design improves by 76% on shot noise and
60% on average.

F. On Deformable Convolution
In the main paper, we found that replacing convolutional

layers with deformable convolutional layers can increase
the robustness of stereo networks. For the sake of complete-
ness, in this section, we motivate the use of deformable con-
volutions in convolutional neural networks (CNNs) through
their formulation. We then describe the use of deformable
convolution in stereo matching networks.

Motivation. Due to rigid components, CNNs are limited
at modeling geometric variations in object viewpoint, pose,
scale, and part deformation. Conventional architectures are
comprised of layers of fixed size convolutional filters over
a regular grid with limited receptive field. While feature
pyramids using spatial downsampling (e.g. max pooling
and strided convolution) allow for modeling different scales
of objects populating the scene, extensive geometric data
augmentations are necessary to capture the variations listed
above. Yet, it is not possible to fully capture all variations
in the data. Additionally, the effective field of view is lim-
ited to a local neighborhood sampled regularly, which is ig-
norant of object boundaries. Hence, [4, 42] proposed de-
formable convolutions to learn object deformations by di-
rectly conditioning on the data. Deformable convolution
adds 2D offsets, predicted based on the input feature map,
to the sampling grid of standard convolution. It allows the
sampling grid to deform freely and hence capture visibility
phenomena such as occlusions, as visualized in Fig. 9.

Formulation. Let x be an input feature map and y be
an output feature map. The standard 2D convolution is a
two-step operation: 1) sample x over a regular grid R; 2)
compute a weighted sum of the sampled values to generate
y. Formally, for each location p0 in y,

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn) (7)

where pn are the locations in R.
In deformable convolution, the sampling grid R are aug-

mented with offsets {∆pn|n = 1, ..., |R|}. Eqn. 7 extends

Figure 9. Deformable convolution. (a) The sampling grid of a
standard 3 × 3 convolution. (b) The sampling locations of a de-
formable convolution (dark blue), adaptively offset from the regu-
lar sampling grid.

to

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn +∆pn). (8)

Here, we sample at offset locations pn+∆pn. Because the
offset pn can be fractional, x(p0+pn+∆pn) may not cor-
respond to an actual element and is subject to quantization
effects. Hence, x(p0+pn+∆pn) is computed via bilinear
interpolation.

Use in stereo matching. AANet [37] introduce an intra-
scale aggregation (ISA) module for cost aggregation, de-
signed to adaptively sample points from regions of similar
disparity. The authors intuit that adaptive sampling prevents
the edge-fattening issue at disparity discontinuities [23].
Formally, let C ∈ RD×H×W be a cost volume with maxi-
mum disparity D, height H, and width W. For K2 sampling
points, the ISA computation is

C̃(d,p) =

K2∑
k=1

wk ·C(d,p+ pk +∆pk) (9)

where C̃(d,p) is the aggregated cost at pixel p for dispar-
ity d, wk is the weight for point k, pk is a fixed offset from
p, and ∆pk is a learned offset. Since the formulations are
similar, ISA is implemented with deformable convolution.
We note that in addition to the ISA module, AANet also em-
ploys deformable convolutions in its encoder to reduce sam-
pling across object boundaries, which minimizes the bleed-
ing effect often seen in backprojected point clouds. While
the proposed use case is mainly to handle object deforma-
tion and variations in view point, we found that deformable
convolutions are amicable towards defending against adver-
saries as their formulation naturally allows for “avoiding”
certain signals e.g. occlusion boundaries, part deformation,
and perhaps adversarial perturbations present in the input.



Figure 10. Sample efficiency. We optimize SUPs for AANet,
DeepPruner and PSMNet with fewer samples and test their effec-
tiveness on KITTI 2015. SUPs for AANet and PSMNet be still be
effective even when optimized with 79% fewer samples; the effec-
tiveness of SUPs optimized for DeepPruner start to decrease when
optimized with less than 60% of the dataset.

G. On Sample Efficiency
In Fig 5, 8 of main text, SUPs were optimized using

KITTI (outdoor driving, real domain) and are added to im-
ages from the FlyingThings3D test set (randomly generated
scenes, synthetic), part of the Scene Flow [17] datasets.
These perturbed images are fed to AANet [37], DeepPruner
[5] and PSMNet [2] that were trained on Scene Flow. For
this particular set of experiments, our SUPs were trained
with substituted data from KITTI and zero-shot transferred
to FlyingThings3D.

In this section, we study the sample efficiency of SUPs.
We optimized SUPS for AANet, DeepPruner and PSMNet
using the KITTI raw dataset for varying training sample
sizes. Fig. 10 shows that SUPs for AANet and PSMNet
are still effective when optimized with just 21% of KITTI;
whereas SUPs for DeepPruner start to decrease in effective-
ness when we remove 60% of the samples.

H. Limitations
While we have demonstrated stereoscopic universal per-

turbations (SUPs) that generalize across network architec-
tures, datasets and domains and showed that deformable
convolutions and explicit matching can help mitigate them,
there exist limitations on both fronts. Despite reaching as
high as 87% in D1-error error on PSMNet, SUPs has a lim-
ited effectiveness on AANet and reaches 50% D1-error –
this is equivalent to half of the perceived scene being cor-
rupted. In none of our experiments do the error reach 100%,
meaning that there are still portions of the scene that are rea-
sonably correct.

We note that such perturbations are not undefendable; we
showed that fine-tuning with adversarial data augmentation
does mitigate them to some extent, but not fully. For ex-

ample D1-error decreased from 87.72% to 2.96% for PSM-
Net when attacked by the adversary it was trained on, but
when attacked by new adversaries, it still has a 35.75%
error. While our proposed architecture designs involving
deformable convolutions and explicit matching does help,
they also do not fully mitigate the attack.

Our scope is limited to stereo [2, 5, 20, 37]; however,
the component proposed in our architectural design. i.e.
deformable convolutions and inductive biases like explicit
matching, are used in many geometric problems such as op-
tical flow [1,12–14, 24,26,38], multi-view stereo [3,10, 27,
40, 41], monocular depth prediction [6, 8, 19, 21, 22, 28, 34],
and depth completion [11, 15, 18, 30–32, 35, 39, 43]. These
are problems where adversarial and universal perturbations
are less studied. So there is a long road ahead, but we hope
that our findings will be useful towards realizing robustness
deep neural networks.

I. Discussion of Potential Negative Impact
Deep learning models have been extensively deployed

for many applications. Hence, adversarial perturbations
have been treated as a security concern. These concerns
were initially far fetched, as adversarial perturbations were
optimized per-image instance; it would be computationally
infeasible to corrupt a model in real-time. Yet, the discov-
ery of universal adversarial perturbations made the security
threat more realistic.

We showed that stereoscopic universal perturbations
(SUPs) that generalize across architecture and data exist.
These can be applied effectively to attack models in the
black-box setting, and so appear to present a more immedi-
ate security threat. Yet, we believe these perturbations will
not cause damage outside of the academic setting. While
our perturbations can be realized as a filter to be placed on
top of a camera lens, autonomous agents typically have a
myriad other sensors. An autonomous system should not
fail due to a corrupted disparity map as long as it can rely
on sensor measurements from other sources.

Rather, we have used stereoscopic universal perturba-
tions to better understand the robustness of stereo networks.
By identifying how SUPs can corrupt stereo networks, we
were able to motivate several architectural designs (see Sec.
5, main text) that ultimately improve the robustness of
stereo models. Adversarial perturbations expose inherent
problems with our deep networks – yet, we view them as an
opportunity to unravel our black-box models and develop
more robust representations.

Nonetheless, to mitigate them, one can redesign models
with the proposed architectural changes, leverage adversar-
ial data augmentation to fine-tune existing models, or uti-
lize techniques to denoise, purify, or rectify the input as dis-
cussed in our Related Works section (Sec. 2, main text).
Additionally, we will also restrict code and perturbations



usage via our release license.

J. Additional Qualitative Results
In Fig. 11 we show SUPs optimized for AANet, Deep-

Pruner, and PSMNet on the KITTI dataset. Each panel of
two rows shows SUPs optimized over the full 256 × 640
image and the 64 × 64 sized perturbations, tiled across the
image domain, for each method. The tiled perturbations are
then used for each subsequent visualization. We note that
for all full image size SUPs, there are structural artifacts bi-
ased by the scenes in the dataset. For instance, full image
size SUPs for PSMNet shows a road pattern in the both per-
turbation images. As a result, these dataset specific struc-
tures limit the generalization of SUPs that were optimized
over the full image. Unlike them, 64× 64 tiles do not con-
tain any of these structures as they are spatially invariant,
enabling them to transfer across datasets and domains.

Next, we demonstrate attacks against each model us-
ing the SUPs trained for it. We show the perturbed stereo
pair, the original disparities estimated from clean stereo
pairs and the corrupted disparities estimated from the per-
turbed stereo pair for KITTI 2015 (Fig. 12), KITTI 2012
(Fig. 13), and FlyingThings3D (Fig. 14). To demonstrate
how an attack varies for different upper norms, we attack
each network for scenes from KITTI 2015 using pertur-
bations with upper norm ϵ ∈ {0.002, 0.005, 0.01, 0.02};
we look at AANet in Fig. 15, DeepPruner in Fig. 16, and
PSMNet in Fig. 17. As expected, as the upper norm ϵ
increases, we also observe more corruption in the dispar-
ity map. The corrupted regions are generally estimated as
“closer” to the camera. We conclude by visualizing trans-
ferability of the SUPs to PSMNet across different datasets
in Fig. 18, Fig. 19, and Fig. 20.

References
[1] Filippo Aleotti, Matteo Poggi, Fabio Tosi, and Stefano Mat-

toccia. Learning end-to-end scene flow by distilling single
tasks knowledge. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 10435–10442,
2020. 9

[2] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5410–
5418, 2018. 2, 9

[3] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based
multi-view stereo network. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1538–
1547, 2019. 9

[4] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017. 8

[5] Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu,
and Raquel Urtasun. Deeppruner: Learning efficient stereo

matching via differentiable patchmatch. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 4384–4393, 2019. 2, 9

[6] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-
supervised visual depth prediction. IEEE Robotics and Au-
tomation Letters, 4(2):1661–1668, 2019. 9

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, 2012. 2

[8] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019. 9

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1

[10] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade cost volume for high-resolution
multi-view stereo and stereo matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2495–2504, 2020. 9

[11] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and
Xiaojin Gong. Penet: Towards precise and efficient image
guided depth completion. arXiv preprint arXiv:2103.00783,
2021. 9

[12] Dong Lao and Ganesh Sundaramoorthi. Minimum delay
moving object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4250–4259, 2017. 9

[13] Dong Lao and Ganesh Sundaramoorthi. Extending layered
models to 3d motion. In Proceedings of the European con-
ference on computer vision (ECCV), pages 435–451, 2018.
9

[14] Dong Lao and Ganesh Sundaramoorthi. Minimum delay ob-
ject detection from video. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5097–
5106, 2019. 9

[15] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua
Yang. Dynamic spatial propagation network for depth com-
pletion. arXiv preprint arXiv:2202.09769, 2022. 9

[16] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 2

[17] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 2, 9

[18] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and
In-So Kweon. Non-local spatial propagation network for
depth completion. In European Conference on Computer
Vision, ECCV 2020. European Conference on Computer Vi-
sion, 2020. 9

[19] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-
toccia. On the uncertainty of self-supervised monocular



Figure 11. Examples of Stereoscopic universal perturbations (SUPs) optimized for AANet, DeepPruner, and PSMNet on the KITTI dataset.
Each panel of two rows shows SUPs optimized over the full 256× 640 image and the 64× 64 sized perturbations, tiled across the image
domain, for each method. We note that for all full image size SUPs, there are structural artifacts biased by the scenes in the dataset, which
limits their generalization capabilities.

depth estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3227–3237, 2020. 9

[20] Matteo Poggi, Filippo Aleotti, Fabio Tosi, Giulio Zaccaroni,
and Stefano Mattoccia. Self-adapting confidence estimation
for stereo. In European Conference on Computer Vision,
pages 715–733. Springer, 2020. 9

[21] Matteo Poggi, Fabio Tosi, Filippo Aleotti, and Stefano Mat-
toccia. Real-time self-supervised monocular depth estima-
tion without gpu. IEEE Transactions on Intelligent Trans-

portation Systems, 2022. 9
[22] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-

sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12179–12188, 2021. 9

[23] Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. International journal of computer vision, 47(1):7–
42, 2002. 8

[24] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.



Figure 12. Attacking AANet, DeepPruner, and PSMNet on a scene from KITTI 2015 using the SUP trained for each model.

Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018. 9

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1

[26] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 9

[27] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo



Figure 13. Attacking AANet, DeepPruner, and PSMNet on a scene from KITTI 2012 using the SUP trained for each model.

Speciale, and Marc Pollefeys. Patchmatchnet: Learned
multi-view patchmatch stereo. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14194–14203, 2021. 9

[28] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth

hints. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2162–2171, 2019. 9

[29] Alex Wong, Safa Cicek, and Stefano Soatto. Targeted ad-
versarial perturbations for monocular depth prediction. Ad-
vances in Neural Information Processing Systems, 33, 2020.
1



Figure 14. Attacking AANet, DeepPruner, and PSMNet on a scene from FlyingThings3D using the SUP trained for each model.



Figure 15. Attacking AANet at different upper norms ϵ ∈ {0.002, 0.005, 0.01, 0.02} for a scene from KITTI 2015.

[30] Alex Wong, Safa Cicek, and Stefano Soatto. Learning topol-
ogy from synthetic data for unsupervised depth comple-
tion. IEEE Robotics and Automation Letters, 6(2):1495–
1502, 2021. 9

[31] Alex Wong, Xiaohan Fei, Byung-Woo Hong, and Stefano
Soatto. An adaptive framework for learning unsupervised

depth completion. IEEE Robotics and Automation Letters,
6(2):3120–3127, 2021. 9

[32] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano
Soatto. Unsupervised depth completion from visual inertial
odometry. IEEE Robotics and Automation Letters, 2020. 9

[33] Alex Wong, Mukund Mundhra, and Stefano Soatto. Stere-



Figure 16. Attacking DeepPruner at different upper norms ϵ ∈ {0.002, 0.005, 0.01, 0.02} for a scene from KITTI 2015.

opagnosia: Fooling stereo networks with adversarial pertur-
bations. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021. 1

[34] Alex Wong and Stefano Soatto. Bilateral cyclic con-
straint and adaptive regularization for unsupervised monoc-
ular depth prediction. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
5644–5653, 2019. 9

[35] Alex Wong and Stefano Soatto. Unsupervised depth comple-
tion with calibrated backprojection layers. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 12747–12756, 2021. 9



Figure 17. Attacking PSMNet at different upper norms ϵ ∈ {0.002, 0.005, 0.01, 0.02} for a scene from KITTI 2015.

[36] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for se-
mantic segmentation and object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1369–1378, 2017. 1

[37] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggrega-
tion network for efficient stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1959–1968, 2020. 2, 8, 9

[38] Yanchao Yang and Stefano Soatto. Conditional prior net-
works for optical flow. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 271–287, 2018.
9

[39] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth



Figure 18. Attacking PSMNet for a scene from KITTI 2015 with a stereoscopic universal perturbations optimized on KITTI for AANet,
DeepPruner, and PSMNet.

posterior (ddp) from single image and sparse range. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3353–3362, 2019. 9

[40] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 767–783, 2018. 9

[41] Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang,
and Long Quan. Recurrent mvsnet for high-resolution
multi-view stereo depth inference. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5525–5534, 2019. 9

[42] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9308–9316, 2019. 8

[43] Yufan Zhu, Weisheng Dong, Leida Li, Jinjian Wu, Xin
Li, and Guangming Shi. Robust depth completion
with uncertainty-driven loss functions. arXiv preprint
arXiv:2112.07895, 2021. 9

[44] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn
Newsam, Andrew Tao, and Bryan Catanzaro. Improving se-
mantic segmentation via video propagation and label relax-
ation. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 8856–8865,
2019. 2, 7



Figure 19. Attacking PSMNet for a scene from KITTI 2012 with a stereoscopic universal perturbations optimized on KITTI for AANet,
DeepPruner, and PSMNet.



Figure 20. Attacking PSMNet for a scene from FlyingThings3D with a stereoscopic universal perturbations optimized on KITTI for AANet,
DeepPruner, and PSMNet.


