
Deep Visual Geo-localization Benchmark:
Supplementary Material

Gabriele Berton
Politecnico di Torino

Riccardo Mereu
Politecnico di Torino

Gabriele Trivigno
Politecnico di Torino

Carlo Masone
CINI

Gabriela Csurka
NAVER LABS Europe

Torsten Sattler
CIIRC, Czech Technical

University in Prague

Barbara Caputo
Politecnico di Torino

This supplementary material contains additional infor-
mation that could not fit within the main paper due to a lack
of space:

- Section 1 describes in detail the datasets used in the
benchmark.

- Section 2 explains the organization of the open-source
software that implements the benchmark.

- Section 3 provides extended results and discussions for
the experiments presented in the main paper.

- Section 4 contains additional experiments and discus-
sions that complement the tests presented in the main
paper.

1. Datasets

Pitts30k [1] is a subset of Pitts250k [26], split in train,
val and test set. It is collected from Google Street View im-
agery from the city of Pittsburgh cropping equirectangular
panoramas into tiles, and applying a gnomonic projection
to the tiles. Database and queries are collected two years
apart, and there are no noticeable weather variations.

Mapillary Street Level Sequence (MSLS) [28] spans
multiple cities across six continents, covering a large va-
riety of domains, cameras and seasons. As for Pitts30k,
it is split in train, val and test set, although the test set’s
ground truths are not currently released. We therefore re-
port the validation recalls, following previous works [8].
Only Pitts30k and MSLS provide a train set with temporal
variability, which is necessary for training a VG model [1].

Tokyo 24/7 [25] presents a relatively large database
(from Google Street View) against a smaller number of
queries, which are split into three equally sized sets: day,
sunset and night. The latter are manually collected with

phones. In some cases [1, 15, 31] Tokyo Time Machine
(Tokyo TM) is used as a training set for Tokyo 24/7.

San Francisco [4], similarly to Tokyo 24/7, is composed
of a large database collected by a car-mounted camera and
orders of magnitude less queries taken by phone. Among
the multiple Structure from Motion reconstructions avail-
able, we use the one from [14, 27] as it offers the most ac-
curate query 6 DoF coordinates, thus referring to it as Re-
visited San Francisco.

Eynsham [5] consists of grayscale images from cam-
eras mounted on a car going around around a loop twice, in
the city and countryside of Oxford. We use the first loop
as database, and second as queries. The cameras collected
equirectangular panoramas, and each panorama was split in
five crops.

St Lucia [17] is collected by driving a car with a for-
ward facing camera around the riverside suburb of St Lucia,
Brisbane. Of the nine drives, we use the first and the last
one as database and queries. Given the high density of the
images (extracted from videos), we select only one frame
every 5 meters. Note that all these pre-processing steps (as
well as downloading) are performed automatically with our
open source codebase (see Section 2).

In Fig. 1 we show relevant query-database image pairs
from each of the used datasets. These examples illustrate
view, environmental, and acquisition condition variability
between query and database images as well as across the
datasets making the generalization between datasets hard.
In Tab. 1 we provide a summary of the number of database
and query images as well as the area and perimeter covered
by the respective datasets. Figure 2 shows the density of the
images in the respective geographical areas.

1



(a) Pitts30k

(b) Tokyo 24/7

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) St Lucia

Figure 1. Examples of a query and a positive for each of the used dataset.



(a) Pitts30k

(b) St Lucia

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) Tokyo 24/7

Figure 2. Maps of used datasets, self-generated with our open source codebase.

# database # queries Dataset
size

Area
(Km2)

Perimeter
(Km) Environment Day/night

changes
Long-term
variations

Pitts30k 30K 21.8K 2.0 GB 0.615 3.42 Urban N Y
MSLS 973K 541K 56 GB N/A N/A Urban + Suburban Y Y
Tokyo 24/7 75K 315 4.0 GB 2.1 5.8 Urban Y Y
R-SF 1.05M 598 36 GB 13.6 14.0 Urban N Y
Eynsham 24K 24K 1.2 GB N/A N/A Urban + Suburban N N
St Lucia 1.5K 1.5K 124 MB 0.69 3.5 Suburban N N

Table 1. Summary of datasets used. Long-term variations refers to images taken at least one year apart.

2. Software
We aim to create and maintain an organized open-source

repository where existing and new VG methods will be in-
tegrated in the future. Our site 1 will be used to show the
performances of these methods with different VG datasets.

Following these main motivations, we designed the soft-
ware aiming to create a modular and easy expandable
framework that provides the users with a common play-
ground (i) to train, test, and fairly compare the impact of
different components of a VG model, (ii) to ease the re-
producibility of the results, and (iii) to evaluate the perfor-
mances with datasets of different scales.

We organized the software into three distinct modules:

- benchmarking vg: a general and expandable
template for training and evaluating VG models;

- dataset vg: a dataset utility to automatically
download most of the datasets described in Section 1

1https://deep-vg-bench.herokuapp.com/

and format them according to a standardized method-
ology;

- pretrain vg: a template to pretrain neural net-
works backbones used in the VG task.

We mainly consider VG techniques that tackle the Visual
Geo-localization problem through an image retrieval ap-
proach using Deep Learning (DL). For this reason, the first
and main module (benchmarking vg) of our framework
follows a common structure for all the models, which are
composed of a neural network backbone and a pooling layer
on top. We integrated existing PyTorch open-source imple-
mentations of VG models or self-implemented them when
they were unavailable. For the similarity search we use the
implementations from the highly optimized FAISS [10] li-
brary. Unless otherwise specified, we use an exhaustive
kNN search. Further techniques can be easily integrated
and work under our environment.

The benchmarking vg module further allows the
user to choose which VG model, training dataset, and min-



ing techniques to use to evaluate its performance. Even ex-
ternal trained models can be loaded and evaluated on VG
datasets. Section 4.1 of this supp. material shows the results
obtained by integrating the models of [19] into our frame-
work.

The pretrain vg module constitutes a template to
pretrain backbones on the Landmark Recognition and Clas-
sification datasets. In the current version, the Google Land-
mark v2 dataset [29] and Places 365 [32] are available.

3. Extended Results
3.1. CNN Backbones

In Tab. 2 we show comparative results obtained by crop-
ping a ResNet-18 and a ResNet-50 to the conv4 x layer
(used in the experiments in the main paper) or alternatively
cropping to the conv5 x (refer to the ResNets paper [9] for
more details on the layers). We see that on average crop-
ping the ResNet backbone at the lower level conv4 x leads
to better results while being somewhat lighter in size.

3.2. Aggregation and Descriptors Dimensionality

In Tab. 3, we show a more comprehensive set of results
than in the main paper, comprising all the aggregation meth-
ods that can be attached to the different backbones using our
software. As seen in the literature, GeM pooling [19] out-
performs in general SPOC [2], MAC [20], R-MAC [24],
RRM [13].

3.3. Visual Transformers: full table

Tab. 4 includes results using Transformer-based back-
bones when trained on Pitts30k that could not fit into the
main paper. In general, it can be seen that these architec-
tures confer better generalization capabilities, outperform-
ing both a ResNet-18 and a much more costly ResNet-50.
Additionally, directly using the CLS token yields worse re-
sults than SeqPool, GeM, or NetVLAD. A possible expla-
nation is that using the CLS is the only strategy that does not
consider the whole set of tokens. This consideration could
indicate that the CLS token provides a less robust represen-
tation, especially when trained on small-scale datasets.

3.4. Negative Mining

Since the inception of the triplet loss, considerable at-
tention has been paid to finding the best possible negative
images. Using negatives too different from the query will
cause a drop in the loss to low values (even to zero if using
a triplet margin loss), severely hindering the learning pro-
cess of the model. For this reason, mining for the hardest
negatives w.r.t. a given query is an important step in learn-
ing representation in general and, hence, in Visual Geo-
localization. Therefore several hard negative mining tech-
niques were proposed in the literature. In [1] the authors

propose to compute offline features for all images (cache)
periodically and to use such features to find the most dif-
ficult negatives. We refer to this as ”full database min-
ing”. While this has proven to produce good results, its time
and space complexities grow linearly with the database size,
making it extremely costly to use it with large dimensional
descriptors and large-scale datasets. In [28] the authors pre-
sented a new large scale dataset, for which the mining pro-
posed by [1] would be rather time-consuming, and they per-
formed an approximation of it considering only a small sub-
set of the database (1000 images), making it a more suitable
choice for large scale datasets. We refer to this as ”partial
database mining”.

Discussion. Tab. 5 shows results when training with differ-
ent mining methods. Full database mining performs the best
when training on Pitts30k, although the less expensive par-
tial mining performs similarly. Surprisingly, when training
on Pitts30k, choosing random negatives without perform-
ing any mining operation results in only a 5% drop in re-
call@1 (on average over all datasets) compared to the train-
ing with partial database mining, although the gap grows to
12% when training on the MSLS dataset. This is probably
due to the huge variety in domains of MSLS (as it spans
over multiple continents), making a random negative likely
to be very different from the query. On the other hand,
Pitts30k is collected in a small area of Pittsburgh, with little
to no weather variations, making random negatives a suit-
able choice for the triplet loss.

Training on MSLS, the results favour partial mining
over full database mining because of the large scale of this
dataset. While all other experiments converge in less than
24 hours, training a network on the MSLS dataset using
full database mining is computationally very expensive, and
therefore we stopped training after 5 days. Moreover, train-
ing a model that outputs a descriptor with high dimensional-
ity (such as the NetVLAD layer) converges slowly and also
requires intractable amounts of RAM, as it requires all im-
ages’ descriptors to be periodically computed and stored in
RAM. These results show that full database mining is im-
practical when working on large-scale problems.

3.5. Data Augmentation

In Fig. 3 we report the same plots shown in the main
paper at Fig. 2, at a bigger and more readable size.

3.6. Query pre/post-processing and Predictions Re-
finement

In a real-world geo-localization system, the queries fed
to the software at production time may have different res-
olutions than the database images. A handful of datasets
(e.g., R-SF [14,27], Tokyo 24/7 [25]) incorporates this vari-
ability, and the solution often used in previous works to
handle such cases [1, 7, 19, 21, 24] is to use a batch size



Backbone
Aggregation
Method

Features
Dim FLOPs

Model
Size

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 conv4 x GeM 256 17.29 GF 10.63 MB Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 conv4 x NetVLAD 16384 17.27 GF 10.76 MB Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 conv5 x GeM 512 22.33 GF 42.67 MB Pitts30k 77.9 ± 0.3 34.4 ± 0.4 34.4 ± 0.6 36.9 ± 0.3 59.1 ± 1.3 51.2 ± 1.3
ResNet-18 conv5 x NetVLAD 32768 22.28 GF 42.92 MB Pitts30k 79.6 ± 0.5 47.1 ± 1.8 48.9 ± 2.5 49.1 ± 3.6 70.5 ± 1.0 54.4 ± 2.7

ResNet-50 conv4 x GeM 1024 40.61 GF 32.71 MB Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 conv4 x NetVLAD 65536 40.51 GF 33.21 MB Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 conv5 x GeM 2048 50.54 GF 89.88 MB Pitts30k 79.8 ± 0.5 41.5 ± 0.7 48.0 ± 2.5 44.3 ± 1.0 65.2 ± 1.4 57.5 ± 1.5
ResNet-50 conv5 x NetVLAD 131072 50.35 GF 90.88 MB Pitts30k 79.6 ± 0.2 46.2 ± 0.5 54.7 ± 2.6 51.2 ± 2.5 69.8 ± 1.0 53.0 ± 4.1

ResNet-18 conv4 x GeM 256 17.29 GF 10.63 MB MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 conv4 x NetVLAD 16384 17.27 GF 10.76 MB MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 conv5 x GeM 512 22.33 GF 42.67 MB MSLS 73.5 ± 0.5 68.4 ± 0.8 41.0 ± 0.8 38.6 ± 1.8 79.4 ± 0.5 84.7 ± 0.7
ResNet-18 conv5 x NetVLAD 32768 22.28 GF 42.92 MB MSLS 75.7 ± 0.7 75.7 ± 0.6 49.9 ± 1.6 41.3 ± 0.2 84.1 ± 0.4 91.3 ± 0.4

ResNet-50 conv4 x GeM 1024 40.61 GF 32.71 MB MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 conv4 x NetVLAD 65536 40.51 GF 33.21 MB MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 conv5 x GeM 2048 50.54 GF 89.88 MB MSLS 74.7 ± 0.4 70.6 ± 0.6 46.3 ± 1.3 42.1 ± 0.5 82.5 ± 0.5 89.8 ± 0.4
ResNet-50 conv5 x NetVLAD 131072 50.35 GF 90.88 MB MSLS 74.7 ± 0.2 75.2 ± 0.5 52.4 ± 0.8 44.0 ± 1.1 85.5 ± 0.4 91.3 ± 0.7

Table 2. ResNets: The advantages of cropping the ResNets at conv4 x for visual geo-localization.

Figure 3. Data Augmentation. Results obtained when applying a number of popular data augmentation techniques during the training. We
used PyTorch’s transforms classes, and the x-axis relates to the parameter passed to the class. Brightness, contrast, saturation and hue are
all performed with ColorJittering(). For RandomPerspective() and RandomRotation(), the parameter refers to the first
argument (distortion scale and degrees respectively). Regarding RandomResizedCrop(), we use the value as (1−x, 1) for
scale so that all transformations have their origin in the same point (i.e. x = 0 equals to the identity transformation), and the crops are
then resized to the original resolution. When used, HorizontalFlipping() is applied with a probability of 0.5. Please refer to the
PyTorch documentation for further information.

of 1 when extracting query descriptors at inference time.
This approach can give good results at the cost of slower
computation, which may or may not be an issue depend-

ing on the application’s scalability requirements. Besides
this common choice, we experiment with other engineering
solutions that allow stacking multiple queries in a batch, in-



Backbone
Aggregation
Method

Features
Dim

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 SPOC [2] 256 Pitts30k 60.6 ± 0.9 16.5 ± 0.5 15.2 ± 1.1 10.4 ± 0.3 41.0 ± 2.0 29.0 ± 1.5
ResNet-18 MAC [20] 256 Pitts30k 57.3 ± 0.5 25.6 ± 0.4 15.2 ± 1.3 15.5 ± 0.3 49.6 ± 0.7 26.6 ± 1.0
ResNet-18 RMAC [24] 256 Pitts30k 63.2 ± 0.4 28.7 ± 0.6 22.7 ± 2.3 30.5 ± 1.4 64.0 ± 0.7 42.8 ± 1.3
ResNet-18 RRM [13] 256 Pitts30k 68.2 ± 0.5 21.4 ± 0.8 25.4 ± 1.4 21.7 ± 1.8 51.9 ± 0.8 33.7 ± 0.3
ResNet-18 GeM [19] 256 Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM + FC 256 256 Pitts30k 72.4 ± 0.7 26.4 ± 0.5 27.5 ± 1.2 29.0 ± 1.2 59.3 ± 1.0 39.1 ± 0.8
ResNet-18 NetVLAD + PCA 256 256 Pitts30k 80.7 ± 0.7 38.3 ± 1.2 41.7 ± 0.8 35.9 ± 1.8 68.9 ± 1.1 45.4 ± 2.2
ResNet-18 CRN + PCA 256 256 Pitts30k 82.0 ± 0.7 43.6 ± 0.7 47.7 ± 0.9 45.1 ± 0.3 71.3 ± 0.8 51.3 ± 3.4

ResNet-18 GeM + FC 2048 2048 Pitts30k 75.0 ± 0.4 29.9 ± 0.6 34.5 ± 0.4 36.1 ± 0.2 63.7 ± 0.3 45.1 ± 2.1
ResNet-18 NetVLAD + PCA 2048 2048 Pitts30k 85.0 ± 0.4 45.0 ± 1.5 56.6 ± 0.7 53.2 ± 2.4 75.4 ± 1.1 54.6 ± 3.0
ResNet-18 CRN + PCA 2048 2048 Pitts30k 85.7 ± 0.3 50.6 ± 0.6 61.0 ± 1.6 62.8 ± 1.2 77.4 ± 0.5 61.1 ± 2.7

ResNet-18 NetVLAD [1] 16384 Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 CRN [12] 16384 Pitts30k 86.8 ± 0.1 53.2 ± 0.7 68.8 ± 1.0 69.0 ± 0.6 79.1 ± 0.3 64.8 ± 3.2

ResNet-50 SPOC [2] 1024 Pitts30k 60.9 ± 0.5 19.2 ± 0.4 14.0 ± 0.5 9.0 ± 0.7 40.5 ± 2.3 27.1 ± 1.5
ResNet-50 MAC [20] 1024 Pitts30k 77.6 ± 0.2 36.2 ± 0.7 36.2 ± 1.4 34.8 ± 0.7 72.9 ± 0.3 51.3 ± 2.4
ResNet-50 RMAC [24] 1024 Pitts30k 74.9 ± 1.0 34.8 ± 0.8 41.8 ± 0.6 46.4 ± 1.0 73.1 ± 0.7 68.7 ± 0.5
ResNet-50 RRM [13] 1024 Pitts30k 72.8 ± 0.2 27.9 ± 0.6 28.3 ± 0.8 28.6 ± 1.0 65.9 ± 0.9 45.1 ± 1.7
ResNet-50 GeM [19] 1024 Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 NetVLAD + PCA 1024 1024 Pitts30k 83.9 ± 0.7 46.5 ± 2.0 59.4 ± 1.2 53.2 ± 3.8 72.5 ± 0.3 57.7 ± 2.0
ResNet-50 CRN + PCA 1024 1024 Pitts30k 84.1 ± 0.4 49.9 ± 0.8 64.6 ± 1.2 58.8 ± 0.1 74.3 ± 0.2 63.4 ± 0.4

ResNet-50 GeM + FC 2048 2048 Pitts30k 80.1 ± 0.2 33.7 ± 0.3 43.6 ± 1.6 48.2 ± 1.2 70.0 ± 0.3 56.0 ± 1.7
ResNet-50 NetVLAD + PCA 2048 2048 Pitts30k 84.4 ± 0.4 47.9 ± 2.0 62.6 ± 1.7 56.0 ± 2.9 74.1 ± 0.4 58.9 ± 1.6
ResNet-50 CRN + PCA 2048 2048 Pitts30k 84.7 ± 0.3 51.2 ± 0.8 67.1 ± 0.7 62.3 ± 0.3 75.8 ± 0.2 65.0 ± 0.1

ResNet-50 NetVLAD [1] 65536 Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 CRN [12] 65536 Pitts30k 85.8 ± 0.2 54.0 ± 0.8 73.1 ± 0.3 70.9 ± 0.2 79.7 ± 0.1 65.9 ± 0.4

ResNet-18 SPOC [2] 256 MSLS 44.2 ± 1.0 39.5 ± 0.5 20.3 ± 1.3 9.5 ± 0.9 62.3 ± 0.6 58.8 ± 0.8
ResNet-18 MAC [20] 256 MSLS 60.4 ± 1.1 54.7 ± 1.8 20.4 ± 2.6 18.9 ± 2.0 76.3 ± 1.2 69.2 ± 1.2
ResNet-18 RMAC [24] 256 MSLS 58.1 ± 1.2 48.9 ± 2.0 29.1 ± 2.0 34.3 ± 1.4 73.3 ± 1.1 63.7 ± 2.7
ResNet-18 RRM [13] 256 MSLS 60.8 ± 1.5 54.9 ± 2.6 44.4 ± 2.1 30.9 ± 2.8 75.7 ± 1.5 68.7 ± 1.4
ResNet-18 GeM [19] 256 MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 GeM + FC 256 256 MSLS 68.6 ± 1.1 59.6 ± 2.6 41.9 ± 2.7 31.3 ± 0.5 78.5 ± 2.0 76.1 ± 3.4
ResNet-18 NetVLAD + PCA 256 256 MSLS 74.2 ± 0.2 70.6 ± 0.3 43.6 ± 0.5 34.7 ± 1.7 84.4 ± 0.4 89.8 ± 0.5
ResNet-18 CRN + PCA 256 256 MSLS 74.5 ± 0.8 72.1 ± 0.1 44.1 ± 1.4 35.1 ± 2.4 84.8 ± 0.3 91.6 ± 0.4

ResNet-18 GeM + FC 2048 2048 MSLS 71.9 ± 1.0 64.0 ± 1.2 51.8 ± 0.9 37.6 ± 1.3 81.1 ± 0.9 79.2 ± 0.9
ResNet-18 NetVLAD + PCA 2048 2048 MSLS 80.4 ± 0.4 74.6 ± 0.2 55.6 ± 1.2 47.4 ± 1.1 86.4 ± 0.3 92.2 ± 0.3
ResNet-18 CRN + PCA 2048 2048 MSLS 80.1 ± 0.8 75.8 ± 0.1 57.2 ± 2.3 47.8 ± 2.7 86.8 ± 0.3 93.2 ± 0.4

ResNet-18 NetVLAD [1] 16384 MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 CRN [12] 16384 MSLS 81.3 ± 0.7 76.8 ± 0.0 63.8 ± 1.4 53.9 ± 2.0 87.5 ± 0.2 93.7 ± 0.1

ResNet-50 SPOC [2] 1024 MSLS 47.5 ± 1.3 47.9 ± 1.5 20.6 ± 1.6 8.9 ± 1.0 68.3 ± 0.5 68.6 ± 1.4
ResNet-50 MAC [20] 1024 MSLS 76.0 ± 0.2 67.4 ± 1.6 45.3 ± 1.0 44.4 ± 2.6 84.6 ± 0.4 86.0 ± 0.7
ResNet-50 RMAC [24] 1024 MSLS 70.1 ± 0.8 62.0 ± 0.5 52.1 ± 2.3 54.3 ± 1.8 80.6 ± 0.5 85.9 ± 1.0
ResNet-50 RRM [13] 1024 MSLS 69.3 ± 1.0 67.4 ± 0.4 53.7 ± 0.8 43.7 ± 1.0 84.3 ± 0.5 84.8 ± 1.1
ResNet-50 GeM [19] 1024 MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 NetVLAD + PCA 1024 1024 MSLS 77.4 ± 0.2 74.8 ± 0.3 51.3 ± 1.3 39.0 ± 1.3 85.2 ± 0.3 92.9 ± 0.3
ResNet-50 CRN + PCA 1024 1024 MSLS 77.3 ± 0.3 75.6 ± 0.0 51.8 ± 1.1 38.8 ± 1.0 85.7 ± 0.3 94.1 ± 0.2

ResNet-50 GeM + FC 2048 2048 MSLS 79.2 ± 0.6 73.5 ± 0.8 64.0 ± 3.9 55.1 ± 2.4 86.1 ± 0.7 90.3 ± 1.0
ResNet-50 NetVLAD + PCA 2048 2048 MSLS 78.5 ± 0.2 75.4 ± 0.2 52.8 ± 0.4 42.6 ± 1.3 85.8 ± 0.3 93.4 ± 0.4
ResNet-50 CRN + PCA 2048 2048 MSLS 78.3 ± 0.3 76.3 ± 0.1 54.3 ± 0.7 42.8 ± 1.6 86.2 ± 0.4 94.4 ± 0.2

ResNet-50 NetVLAD [1] 65536 MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 CRN [12] 65536 MSLS 80.8 ± 0.2 77.8 ± 0.1 63.6 ± 0.5 53.4 ± 1.4 87.5 ± 0.4 94.8 ± 0.3

Table 3. Aggregation methods. Full table of aggregation methods, grouped by backbone and features dimension.



Backbone
Aggregation
Method

Features
Dim FLOPs [GF]

Model
Size [MB]

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM 256 17.29 10.63 Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-50 GeM 1024 40.61 32.71 Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ViT CLS 768 82.31 350.96 Pitts30k 79.2 ± 1.5 39.0 ± 0.8 44.5 ± 3.2 48.3 ± 2.5 67.6 ± 1.2 69.6 ± 2.0
CCT CLS 384 22.34 190.39 Pitts30k 76.3 ± 1.4 39.5 ± 0.4 39.0 ± 1.7 44.4 ± 0.4 50.8 ± 2.1 57.3 ± 2.6
CCT SeqPool 384 26.19 221.92 Pitts30k 81.1 ± 1.0 46.9 ± 1.2 51.5 ± 0.8 57.8 ± 1.5 75.2 ± 1.1 63.6 ± 2.6
CCT GeM 384 22.36 191.24 Pitts30k 79.6 ± 0.3 47.8 ± 0.7 52.3 ± 2.0 61.3 ± 0.1 71.0 ± 0.8 59.1 ± 2.0

ResNet-18 NetVLAD 16384 17.27 10.76 Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-50 NetVLAD 65536 40.51 33.21 Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
CCT NetVLAD 24576 18.53 160.08 Pitts30k 84.6 ± 0.3 52.5 ± 1.9 69.1 ± 0.4 73.5 ± 1.4 72.6 ± 0.6 56.1 ± 3.3

ResNet-18 GeM 256 17.29 10.63 MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-50 GeM 1024 40.61 32.71 MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ViT CLS 768 82.31 350.96 MSLS 82.9 ± 0.6 73.5 ± 0.6 59.9 ± 4.4 65.0 ± 1.1 84.5 ± 1.0 93.6 ± 0.7
CCT CLS 384 22.34 190.39 MSLS 79.6 ± 0.3 71.1 ± 0.4 52.0 ± 1.1 49.9 ± 1.8 85.6 ± 0.1 94.0 ± 0.3
CCT SeqPool 384 26.19 221.92 MSLS 81.4 ± 0.8 71.0 ± 0.9 59.1 ± 3.2 60.5 ± 1.5 86.1 ± 0.6 92.4 ± 1.1
CCT GeM 384 22.36 191.24 MSLS 78.7 ± 0.6 72.0 ± 0.6 48.8 ± 1.2 48.6 ± 2.9 83.9 ± 0.1 92.9 ± 0.7

ResNet-18 NetVLAD 16384 17.27 10.76 MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-50 NetVLAD 65536 40.51 33.21 MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
CCT NetVLAD 24576 18.53 160.08 MSLS 85.1 ± 0.2 79.9 ± 0.3 70.3 ± 2.0 65.9 ± 1.3 87.4 ± 0.2 98.4 ± 0.2

Table 4. Transformers Comparison of traditional CNN architectures with novel Transformers-based approaches.

Backbone
Aggregation
Method

Mining
Method

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Random Pitts30k 73.7 ± 0.7 30.5 ± 0.5 31.3 ± 0.8 24.0 ± 1.2 58.2 ± 1.4 41.0 ± 1.2
ResNet-18 GeM Full database mining Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Partial database mining Pitts30k 76.5 ± 0.3 34.2 ± 1.3 33.9 ± 1.4 32.9 ± 0.7 64.0 ± 2.4 45.6 ± 0.9

ResNet-18 NetVLAD Random Pitts30k 83.9 ± 0.5 43.6 ± 0.5 55.1 ± 1.3 53.8 ± 1.1 76.3 ± 0.6 53.5 ± 1.4
ResNet-18 NetVLAD Full database mining Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Partial database mining Pitts30k 86.2 ± 0.3 47.3 ± 0.4 61.2 ± 0.5 62.9 ± 0.3 76.6 ± 0.5 57.1 ± 1.6

ResNet-50 GeM Random Pitts30k 77.9 ± 1.0 34.3 ± 1.3 40.1 ± 1.0 35.5 ± 3.0 63.8 ± 0.9 52.3 ± 1.4
ResNet-50 GeM Full database mining Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Partial database mining Pitts30k 82.3 ± 0.0 39.0 ± 0.4 43.5 ± 0.2 45.5 ± 1.7 67.7 ± 1.4 61.0 ± 2.0

ResNet-50 NetVLAD Random Pitts30k 83.4 ± 0.6 45.0 ± 0.3 61.9 ± 2.1 55.8 ± 1.5 75.0 ± 1.8 52.6 ± 1.2
ResNet-50 NetVLAD Full database mining Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Partial database mining Pitts30k 85.5 ± 0.3 48.6 ± 3.1 66.7 ± 4.1 65.0 ± 4.3 77.6 ± 1.3 59.0 ± 4.1

ResNet-18 GeM Random MSLS 62.2 ± 0.3 50.6 ± 0.6 28.8 ± 0.8 17.1 ± 1.0 70.2 ± 0.6 71.4 ± 1.0
ResNet-18 GeM Full database mining MSLS 70.1 ± 1.1 61.8 ± 0.5 42.8 ± 1.4 31.3 ± 1.2 79.3 ± 0.2 81.0 ± 0.9
ResNet-18 GeM Partial database mining MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9

ResNet-18 NetVLAD Random MSLS 73.3 ± 0.7 61.5 ± 1.4 45.0 ± 1.5 34.8 ± 0.2 84.9 ± 0.3 79.7 ± 1.7
ResNet-18 NetVLAD Full database mining MSLS - - - - - -
ResNet-18 NetVLAD Partial database mining MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7

ResNet-50 GeM Random MSLS 69.5 ± 1.2 57.4 ± 1.1 43.5 ± 3.3 31.1 ± 0.9 78.8 ± 0.5 78.3 ± 1.2
ResNet-50 GeM Full database mining MSLS 77.3 ± 0.3 69.7 ± 0.2 52.4 ± 1.7 45.3 ± 0.2 84.2 ± 0.0 91.0 ± 0.2
ResNet-50 GeM Partial database mining MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7

ResNet-50 NetVLAD Random MSLS 74.9 ± 0.4 63.6 ± 1.3 41.9 ± 1.6 34.6 ± 2.3 85.5 ± 0.2 80.9 ± 0.4
ResNet-50 NetVLAD Full database mining MSLS - - - - - -
ResNet-50 NetVLAD Partial database mining MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2

Table 5. Mining methods.

vestigating if it is possible to simultaneously also improve
the recalls. We group the methods into pre-processing, post-
processing, and predictions refinement, according to where
in the pipeline they are applied (see diagram in Fig. 1 of
main paper).

In Tab. 6 we report the full results of our pre/post-
processing and predictions refinement experiments, while
the following is a thorough explanation of how such meth-
ods are applied. With respect to pre-processing approaches,
in Hard Resize we perform an anisotropic resize of the



Backbone
Aggregation
Method

Pre/Post-
Processing
Method

Pre-
Proc.

Post-
Proc.

Batch
Parall.

Training
Dataset.

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Hard Resize Y N Y Pitts30k 77.8 ± 0.2 35.3 ± 0.5 31.8 ± 0.9 33.2 ± 2.1 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Single Query Y N N Pitts30k 77.8 ± 0.2 35.6 ± 0.6 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Central Crop Y N Y Pitts30k 77.8 ± 0.2 34.8 ± 0.5 36.4 ± 1.1 32.6 ± 1.4 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Five Crops Mean Y Y Y Pitts30k 75.4 ± 0.3 30.2 ± 0.2 35.9 ± 0.5 34.4 ± 2.0 59.1 ± 0.7 43.3 ± 0.8
ResNet-18 GeM Nearest Crop Y Y Y Pitts30k 74.8 ± 0.1 28.3 ± 0.3 33.8 ± 1.3 35.7 ± 1.6 55.5 ± 0.8 39.4 ± 0.5
ResNet-18 GeM Majority Voting Y Y Y Pitts30k 75.1 ± 0.0 29.1 ± 0.4 34.8 ± 1.5 35.3 ± 1.3 51.8 ± 0.2 41.3 ± 0.5

ResNet-18 NetVLAD Hard Resize Y N Y Pitts30k 86.4 ± 0.3 47.4 ± 1.2 58.3 ± 1.4 58.9 ± 1.1 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Single Query Y N N Pitts30k 86.4 ± 0.3 47.5 ± 1.3 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Central Crop Y N Y Pitts30k 86.4 ± 0.3 48.0 ± 1.3 63.2 ± 0.2 57.8 ± 0.4 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Five Crops Mean Y Y Y Pitts30k 85.1 ± 0.2 45.3 ± 1.3 63.0 ± 0.7 60.9 ± 1.7 78.9 ± 0.9 54.6 ± 2.8
ResNet-18 NetVLAD Nearest Crop Y Y Y Pitts30k 84.8 ± 0.2 46.0 ± 1.5 67.0 ± 1.4 64.8 ± 0.7 75.7 ± 1.4 53.0 ± 2.5
ResNet-18 NetVLAD Majority Voting Y Y Y Pitts30k 84.8 ± 0.3 45.2 ± 1.4 66.9 ± 1.1 64.7 ± 0.7 77.1 ± 1.1 53.4 ± 2.3

ResNet-50 GeM Hard Resize Y N Y Pitts30k 82.0 ± 0.3 38.0 ± 0.1 34.6 ± 1.4 40.7 ± 1.8 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Single Query Y N N Pitts30k 82.0 ± 0.3 38.2 ± 0.3 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Central Crop Y N Y Pitts30k 82.0 ± 0.3 37.5 ± 0.3 40.4 ± 0.9 41.0 ± 2.6 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Five Crops Mean Y Y Y Pitts30k 80.4 ± 0.1 33.2 ± 0.1 39.8 ± 2.0 43.8 ± 0.9 65.0 ± 2.4 54.4 ± 1.3
ResNet-50 GeM Nearest Crop Y Y Y Pitts30k 79.2 ± 0.2 30.8 ± 0.2 43.5 ± 1.4 46.9 ± 1.4 63.5 ± 2.2 52.6 ± 1.4
ResNet-50 GeM Majority Voting Y Y Y Pitts30k 79.7 ± 0.0 31.5 ± 0.1 43.0 ± 2.0 44.8 ± 1.2 62.9 ± 2.3 52.8 ± 0.9

ResNet-50 NetVLAD Hard Resize Y N Y Pitts30k 86.0 ± 0.1 50.7 ± 2.0 64.3 ± 1.9 64.3 ± 1.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Single Query Y N N Pitts30k 86.0 ± 0.1 50.6 ± 1.9 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Central Crop Y N Y Pitts30k 86.0 ± 0.1 50.9 ± 1.9 68.3 ± 1.4 64.6 ± 2.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Five Crops Mean Y Y Y Pitts30k 84.7 ± 0.1 47.4 ± 1.9 68.0 ± 2.2 66.5 ± 1.5 78.6 ± 0.3 54.3 ± 2.8
ResNet-50 NetVLAD Nearest Crop Y Y Y Pitts30k 84.2 ± 0.2 47.0 ± 1.7 72.3 ± 1.3 68.4 ± 0.8 76.8 ± 0.5 52.3 ± 2.3
ResNet-50 NetVLAD Majority Voting Y Y Y Pitts30k 84.3 ± 0.2 47.1 ± 1.7 72.8 ± 0.8 68.1 ± 1.3 77.5 ± 0.4 53.4 ± 2.2

Table 6. Query pre/post-processing. Results with different pre/post-processing methods are shown in the table. The batch parallelization
column indicates if images have to be processed one by one or if they can be stacked in a batch for parallel computation.

query to the same dimension as the database images (effec-
tively leaving the query unchanged if the query and database
images’ dimensions already match); for Single Query we
isotropically resize so that the query’s shortest side is equal
to the database images’ shortest side, the aspect ratio is pre-
served, images are not padded, and if they are of varying
resolutions, they cannot be stacked in a batch; in Central
Crop we isotropically resize to the smallest resolution that
can accommodate a rectangular region of the size of the
database images, and a central crop of such size is taken;
in Five Crops we produce five square crops of the database
images shortest side.

Regarding post-processing and predictions refinement
methods, with Mean we simply compute the mean of the
descriptors of the five crops; in Nearest Crop we choose
the prediction with shortest descriptors distance from at
least one crop; with Majority Voting we implement a vot-
ing mechanism taking into account the distances from each
crop’s first 20 predictions.

Discussion. It can be seen in Tab. 6 that, as expected,
Hard Resize, Single Query and Central Crop produce ex-
actly the same results when queries have the same size as
the database images (Pitts30k, Eynsham and St Lucia), as
in these cases they correspond to an identity transformation.
On the other hand, in Tokyo 24/7 and R-SF, where roughly
half of the queries are vertical (i.e., the height is longer than

the width), more complex techniques, such as Nearest Crop
and Majority Voting, on average yield better results. This is
particularly noticeable with more robust networks. Further-
more, these methods allow multiple queries to be stacked in
a single batch, as the crops they operate on all have the same
dimensions. Finally, we can state that the ideal approach
highly depends on the application: for robotics, if all images
come from the same devices (and have the same resolution
as database images), simply applying Hard Resize (which
in this case results in no resize at all) leads to best results; in
cases where queries can have unrestricted resolutions, Sin-
gle Query represents a simple approach with acceptable re-
sults, while Nearest Crop produces the best R@1 and offers
the possibility of batch parallelization, which is crucial for
scalability.

3.7. Nearest Neighbor Search and Inference Time

As stated in the main paper, matching time can signif-
icantly impact inference time (see Sec. 4.7 of the main
paper) and memory footprint. This section reports exper-
iments with the different indexing techniques listed in the
main paper, reporting extensive results on all datasets. The
goal is to investigate how and if it is possible to make this
computation more efficient.

Discussion. In Fig. 4 we show results for various methods.
Among the most outstanding results, using an Inverted File



Figure 4. Optimized kNN indexing: faster search & lower memory footprint. The plots shows a number of efficient kNN variants,
on different datasets, which are applied on features extracted with a ResNet-50 + GeM (features dimension 1024) trained on Pitts30k.
On the x-axis is the matching time in seconds for all the queries in each dataset, while on the y-axis is the recall@1. The numbers next
to the dots represent the RAM requirements of the method (memory footprint) in MB. Besides exhaustive kNN, we employ inverted file
indexes (IVF) [23], product quantization (with and without inverted indexes, respectively PQ and IVFPQ) [11], the inverted multi index
(MultiIndex) [3] and hierarchical navigable small world graphs (HNSW) [16]. In the legend, the parameters are shown for each method.
The last parameter of IVFPQ, MultiIndex and IVF, which is either 1 or 10, represents the percentage of Voronoi cells to search, given that
the search space has been split into 1000 Voronoi cells.

Index (IVF) [23] can lead to a reduction of matching time of
roughly 20 times, while lowering the recall@1 of less than
2% on average. The Hierarchical Navigable Small World
graphs (HNSW) [16] and the Inverted Multi-Index (Multi-
Index) [3] bring similar achievements as the Inverted File
Index, with slightly slower computation but higher recall.
Regarding memory footprint, the Inverted File Index with
Product Quantization (IVFPQ) [11] can reduce it by a fac-
tor of 64, and in the largest dataset, namely Revisited San
Francisco (R-SF), it reduces matching time by 98.5%, with
a drop in accuracy from 45.4% to 41.4%. However, the im-
provements become less obvious as the size of the database
diminishes, as shown in the plots. Compared to the Inverted
File Index with Product Quantization, the simpler Product
Quantization leads to the same memory savings but lower
recall-speed ratio, making Inverted File Index with Product
Quantization the Pareto optimal solution concerning the re-
call@1 and the matching time when memory efficiency is
an issue.

4. Additional Experiments
While the different components of a Visual Geo-

localization system, as shown in Fig. 1 of the main paper,
have been thoroughly studied in Sec. 4 of the main paper

and Sec. 3 of this supp. material, in this section, we investi-
gate several other factors. In Sec. 4.1, we aim to understand
if models trained on large-scale landmark retrieval datasets
can be reliably used for VG. In Sec. 4.2, we use images
from those datasets as distractors to increase the size of the
database of various orders of magnitude. The same land-
mark retrieval datasets are used in Sec. 4.4 to see if models
pretrained on landmark retrieval can be easily fine-tuned for
VG. Finally, in Sec. 4.5, we explore the use of different met-
rics and how they relate to the final results.

4.1. The role of the training dataset

In this section, we further investigate the role of the train-
ing dataset. To this end, we compute results with publicly-
available state-of-the-art models for image retrieval2, which
have been trained on large scale landmark retrieval datasets,
and we compare them with analogous networks trained on
Pitts30k and MSLS. Note that higher recalls could have
been achieved using a NetVLAD+PCA, but the GeM +
FC aggregation was preferred to obtain a fair comparison
with the models provided by third parties as state-of-the-
art trained on the landmark datasets. Our framework easily

2https : / / github . com / filipradenovic /
cnnimageretrieval-pytorch



Source Loss
Training
Dataset Backbone

Aggregation
Method

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

[19] Triplet GLDv1 ResNet-50 GeM + FC 2048 84.1 69.5 77.8 76.4 61.8 77.3
[19] Triplet Sfm120k ResNet-50 GeM + FC 2048 83.4 64.5 75.2 75.6 68.8 73.9
- Triplet Pitts30k ResNet-50 GeM + FC 2048 80.1 33.7 43.6 48.2 70.0 56.0
- Triplet MSLS ResNet-50 GeM + FC 2048 79.2 73.5 64.0 55.1 86.1 90.3

[19] Triplet GLDv1 ResNet-101 GeM + FC 2048 85.1 72.4 77.8 79.8 61.6 83.4
[19] Triplet Sfm120k ResNet-101 GeM + FC 2048 83.9 64.7 77.5 78.3 62.8 76.3
- Triplet Pitts30k ResNet-101 GeM + FC 2048 82.4 40.0 47.2 57.5 75.9 61.7
- Triplet MSLS ResNet-101 GeM + FC 2048 79.1 75.3 61.9 54.9 86.0 92.5

Table 7. The role of the training dataset. The table shows results with models trained on large scale landmark retrieval datasets.

allows for retrieval models trained by [19] and [21] to be
automatically downloaded from their GitHub repositories
and used to perform experiments on Visual Geo-localization
datasets.

Discussion. Results are reported in Tab. 7. The experi-
ments confirm that the choice of the training dataset plays a
significant role in a network’s robustness and generalization
capabilities. We notice that models trained on large-scale
landmark retrieval datasets, especially on GLDv1 [18], of-
fer a decent off-the-shelf solution for many Visual Geo-
localization datasets. In general, we see that these mod-
els benefit from the wide variety of images present in the
landmark retrieval datasets and are able to learn robust fea-
tures that guarantee good generalization performances in
the VG setting. As for the training directly on VG datasets,
it is noticeable how models trained on MSLS, thanks to
its bigger size and variability, achieve more robustness on
all datasets except for R-SF and Tokyo 24/7 than the same
models trained on Pitts30k. The reason behind this fact is
that the images of these last two datasets are made up of
360° views, unlike the front view scenarios that the model
sees during training on MSLS. Finally, the poor general-
ization performances obtained training on Pitts30k can be
understood in relation to the use of the rather big (in terms
of the number of parameters) FC layer that inevitably leads
to overfitting on the small size of the said dataset; in fact,
Tab. 3 shows how using as aggregator a NetVLAD + PCA
method, significantly reducing the number of parameters,
leads to a better generalization. The takeaway messages
should be to use the training set that presents similar view-
points, if known, or otherwise the more general one, and
choose the model with a number of parameters proportional
to the dataset size.

These results are directly comparable with results from
Tab. 3.

4.2. Scaling datasets with distractors

While in the past few years, software and hardware im-
provements have allowed us to obtain better and faster re-

Figure 5. Scaling datasets with distractors. The plot shows the
effects of exponentially increasing the size of the database up to
8M. In the legend, the descriptors dimensionality is shown be-
tween parentheses.

sults, common datasets are still on a small to medium scale,
and their coverage is still shallow compared to a realistic
real-world application (see Tab. 1). As an example, the San
Francisco dataset, although being one of the largest with a
database of 1 million images, still covers only 9% of the
city of San Francisco. As in our work, we aim to investi-
gate VG’s possible applications, and then we built a large-
scale dataset with up to 8 million distractors. To this end,
we used the 315 queries from Tokyo 24/7, and first built
a small-scale database with their positives and several ran-
dom images from Tokyo 24/7 database (to reach a total of
10.000 pictures). A 10 times bigger set was then built using
the whole Tokyo 24/7 database, as well as the ones from
Pitts30k and MSLS test sets. By using the database of San
Francisco, we reached 1 million images, and, finally, we
scaled it to 8 million by including the whole Google Land-
mark v2 [29], Places 365 [32], and MSLS train database.

Discussion. Results are shown in Fig. 5. Unsurpris-
ingly, we see that results steadily decrease as the size of
the database increases, proving that the task is still far from



Model Trained on Pitts30k Trained on MSLS

R@1 Single DB R@1 Multi DB R@1 Single DB R@1 Multi DB

ResNet-18 + GeM 57.9 42.2 (-27.1%) 74.4 65.1 (-12.5%)
ResNet-50 + GeM 60.9 53.4 (-12.3%) 79.4 71.6 (-9.82%)
ResNet-18 + NetVLAD 70.0 67.4 (-3.7%) 83.0 79.0 (-4.1%)
ResNet-50 + NetVLAD 71.4 68.7 (-3.8%) 83.2 79.0 (-5.0%)

Table 8. All-data benchmark. Using all queries from the six
datasets, Single DB indicates the average result from matching the
queries only to their respective database, Multi DB refers to match-
ing the the queries to all six databases merged.

solved.

4.3. Testing on an ensemble of datasets

The experiment presented in Sec. 4.2 investigates how
VG methods perform on a large-scale database built with
8M distractors, but with the queries all taken from a sin-
gle dataset. However, in practice, the VG model may be
tasked to geolocalize queries coming from different data
distributions and geographical areas (e.g., Tokyo, San Fran-
cisco, etc.). To investigate how VG models fare in this sit-
uation, the benchmark also supports experiments consider-
ing an ensemble dataset that combines all the test queries
and databases considered so far, i.e. Pitts30k, MSLS, Tokyo
24/7, R-SF, Eynsham, and St Lucia. In particular, here we
report the results achieved matching the queries only to their
respective database (Single DB) and matching the queries to
all six databases merged (Multi DB).

Discussion. The results in Tab. 8 report the R@1 achieved
by various methods both in the Single DB and Multi DB
settings. In the Multi DB setting there is a clear decrease in
recall with respect to averaging across the different datasets
tested separately (Single DB), which demonstrates the diffi-
culty of this scenario. Overall, the models trained on MSLS
achieve better results than those trained on Pitts30k, which
confirms that the larger number and variety of images of
MSLS has a notable impact on the generalization capability
of the model. We also observe that the percentile drop on
the R@1 when going from the Single DB to the Multi DB
setting is higher with GeM than with NetVLAD.

4.4. Pretraining the backbone on other datasets

In this section, we investigated whether pretraining the
backbone of our VG system on datasets different from Im-
ageNet can be beneficial for the training of the model.
The datasets used for this purpose were Places 365 [32],
a dataset for scene recognition, and Google Landmark
v2 (GLDv2) [18, 29], a recent large-scale landmark re-
trieval/recognition dataset released by Google. The net-
works were trained with a standard classification approach
for Places and using the ArcFace Loss [6] on GLDv2, fol-
lowing the idea proposed by [30].

Discussion. From the substantial number of experiments
reported in Tab. 9 the evidence is that in the vast majority of

Figure 6. Taking heading into account. Recall@1 on R-SF when
heading is taken into account. Different degrees of headings are
taken into account on the x-axis. The ”Upper bounds” curve refers
to the percentage of queries that have at least one database image
closer than 25 meters with a difference in heading lower than the
given threshold. This corresponds to the upper bound of the re-
call@1.

the cases it is not convenient to choose a dataset other than
ImageNet to pretrain the backbone; however, the scores are
quite close except in the cases of R-SF and Tokyo 24/7
datasets, where using a different pretrain dataset in place of
ImageNet on average leads to a drop in performance. Even
in the few cases where GLDv2 or Places365 achieves the
highest score, the gap is, in practice, negligible. Further-
more, if we take into account the off-the-shelf availability
of ImageNet pretrained backbones with respect to the far
less common alternatives, it is even more clear that the for-
mer is the more advantageous choice.

4.5. Metrics

In previous experiments, we showed results based on re-
call@1, with a positive distance of 25 meters. In this sec-
tion, we explore the use of different metrics. Specifically,
we show how results would change if the heading is taken
into account or setting the success threshold to other values
than 25 meters. Moreover, we use various values of recalls.
We compute these results using the models trained for Tab.
3 on Pitts30k and changing only the final metric at test time.

4.5.1 Taking heading/yaw/compass into account

As many datasets commonly used in Visual Geo-
localization only have labels for GPS coordinates, it is of-
ten impossible to assess the difference between a query’s
heading and its predictions. While one might assume that
a positive prediction is likely to have the same heading as
its query, this might not always be the case, as in cities it is
possible to find places that are self-similar in multiple direc-
tions (e.g. buildings facing each other with similar architec-
tures). Moreover, two images representing the same scene
might be taken from a very different viewpoint, within 25
meters from each other. To shed some light on this ques-



Backbone
Aggregation
Method Dataset Training

Dataset
R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM ImageNet Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM GLDv2 Pitts30k 74.2 ± 0.4 30.9 ± 0.6 22.3 ± 1.9 20.4 ± 1.7 55.0 ± 2.0 43.3 ± 0.7
ResNet-18 GeM Places 365 Pitts30k 78.1 ± 1.0 36.2 ± 0.9 31.8 ± 0.7 32.8 ± 1.6 65.0 ± 2.1 48.8 ± 2.1

ResNet-18 NetVLAD ImageNet Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD GLDv2 Pitts30k 83.3 ± 0.5 39.9 ± 0.9 54.2 ± 2.3 41.1 ± 3.6 71.4 ± 2.6 46.8 ± 1.9
ResNet-18 NetVLAD Places 365 Pitts30k 85.9 ± 0.4 47.4 ± 0.6 57.9 ± 1.4 59.9 ± 3.2 78.7 ± 0.7 50.4 ± 1.0

ResNet-50 GeM ImageNet Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM GLDv2 Pitts30k 77.9 ± 0.5 35.2 ± 0.8 27.6 ± 2.1 37.2 ± 1.0 62.7 ± 1.6 48.4 ± 1.7
ResNet-50 GeM Places 365 Pitts30k 82.5 ± 0.4 40.8 ± 0.3 41.3 ± 0.7 45.3 ± 0.6 66.9 ± 1.3 60.8 ± 1.6

ResNet-50 NetVLAD ImageNet Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD GLDv2 Pitts30k 81.7 ± 0.6 43.5 ± 1.0 56.7 ± 0.9 54.1 ± 1.8 71.4 ± 0.6 42.3 ± 2.5
ResNet-50 NetVLAD Places 365 Pitts30k 86.2 ± 0.5 49.9 ± 2.0 66.3 ± 3.3 59.7 ± 3.5 75.4 ± 2.0 57.2 ± 5.5

ResNet-18 GeM ImageNet MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 GeM GLDv2 MSLS 60.7 ± 0.5 64.5 ± 0.7 30.9 ± 3.3 21.5 ± 0.8 79.2 ± 0.6 78.1 ± 1.0
ResNet-18 GeM Places 365 MSLS 71.6 ± 0.9 64.8 ± 1.1 36.6 ± 2.2 25.5 ± 0.3 80.1 ± 0.5 82.4 ± 0.6

ResNet-18 NetVLAD ImageNet MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 NetVLAD GLDv2 MSLS 73.3 ± 0.6 75.3 ± 0.3 53.4 ± 1.3 40.7 ± 2.9 86.1 ± 0.1 87.6 ± 0.9
ResNet-18 NetVLAD Places 365 MSLS 79.7 ± 0.5 75.6 ± 0.2 61.5 ± 0.7 48.6 ± 1.5 86.5 ± 0.1 90.4 ± 0.4

ResNet-50 GeM ImageNet MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 GeM GLDv2 MSLS 71.1 ± 1.7 72.4 ± 0.2 47.6 ± 0.4 35.8 ± 1.6 84.0 ± 0.4 86.1 ± 1.1
ResNet-50 GeM Places 365 MSLS 78.2 ± 1.1 72.7 ± 0.6 51.8 ± 2.7 41.8 ± 2.2 84.4 ± 0.2 89.3 ± 0.8

ResNet-50 NetVLAD ImageNet MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 NetVLAD GLDv2 MSLS 74.7 ± 1.0 77.4 ± 0.4 55.0 ± 1.7 45.4 ± 1.5 85.1 ± 0.5 87.7 ± 0.8
ResNet-50 NetVLAD Places 365 MSLS 80.0 ± 1.1 75.6 ± 0.1 51.3 ± 3.3 44.8 ± 2.3 86.9 ± 0.1 91.3 ± 0.2

Table 9. Pretraining the backbone on other datasets.

tion, we compute recall@1 on the San Francisco dataset,
for which heading labels are available, considering posi-
tives with a variable difference in heading from the query
(Fig. 6). The distance threshold is fixed at 25 meters.

Discussion. We can see from Fig. 6 that roughly all (99.8%)
correct predictions’ heading are within 90° from the query’s
heading, 98% are within 60°, 90% within 45°, 57% within
30°, and only roughly 14% are within 10°. Moreover, we
see that these results are pretty stable across all models. The
figure clearly shows that post-processing techniques must
be considered when an accurate pose estimation is needed.

4.5.2 Changing the positives’ threshold distance

Although in most VG works [1, 12] the distance within
which a database image is considered a positive is 25 me-
ters, in the real world, one might require more or less accu-
rate positions, depending on the task and final goal. Results
are shown in Fig. 7, where we consider thresholds from 1
to 100 meters.

Discussion. Results are consistent across all models: as the

threshold distance grows, we can see a fast rise in recall@1.
Depending on the dataset, this rapid growth slows down
somewhere between 10 and 25 meters. Recall@1 does not
reach 90% for any dataset, even as the threshold grows as
high as 50 meters.
The plots also give interesting insights into the datasets:
looking at the Upper Bound line it is possible to understand
which datasets are denser than others. For example, St Lu-
cia has an upper bound of 88% at 5 meters, meaning that
for 88% of the queries there is at least one positive within
5 a meters threshold. From the plots we see that a distance
of 25 meters provides a reliable threshold for evaluation on
all the considered datasets, as it ensures that close to 100%
of queries have a relevant database image, and that random
chance leads to recalls close to zero.

4.5.3 Other values of recall

In this section, we experiment using other values of N for
the recall@N. Plots with recalls up to 100 are shown in Fig.
8.

Discussion. From Fig. 8 we can extract interesting in-



Figure 7. Changing the positives’ threshold distance. Plots showing how Recall@1 changes when changing the positives’ threshold
(x-axis), expressed in meters. Moreover, we also show the upper bound (some queries might not have positives within a given distance)
and chance, computed by choosing random predictions for each query. All models are trained on the Pitts30k dataset.

(a) (b) (c)

Figure 8. Other values of recall. Plots showing different values of recalls. On the x-axis is N ∈ {1, 2, 3... 100}, and on the y-axis the
recall N.



(a) (b) (c)

Figure 9. The relation between threshold distances, values of the recall and heading distance. These 3D plots show how the three
factors interact with each others. a) shows recall@N while changing the distances and values of the recall (N), and keeping heading
distance at 180°; b) shows recall@1 varying heading angle and distance; c) keeping threshold distance at 25 meters, and varying the two
other factors, shows the recall@N.

sights: we see that if a query’s location is not found within
5 predictions, chances are rather low (35% on average over
all methods on all datasets) that it is found within 20 pre-
dictions. This number is even lower for more challenging
datasets: 19% for MSLS, 26% for San Francisco. Simi-
larly, if a query’s location is not found within one predic-
tion, chances are 75% on average that it is found within 100
(53% for MSLS, 64% for San Francisco).
Moreover, the plot shows the upper bound for re-ranking
methods like [8, 22]: these methods compute re-ranking
over a limited number of predictions (usually 100) as the
time complexity grows linearly with such number. For
example, if 100 predictions are considered for re-ranking,
the resulting recall@1 cannot be higher than the initial re-
call@100. These plots suggest that re-ranking over the top
20/30 predictions would give a similar performance at a
much lower cost.

4.5.4 The relation between threshold distances, values
of the recall and heading distance

In previous sections, we display results while changing one
of the three factors between threshold distances, values of
the recall, and heading distance at a time, here we investi-
gate the relationships between any given pair of them. Fig.
9 shows how these factors interact with each other. To com-
pute the results, we used a ResNet-50 + GeM trained on
Pitts30k, and the recalls in the plots refer to the R-SF dataset
(as it is the only one with heading labels).

5. Ethical implications

The technology of Visual Geo-localization can poten-
tially be used to implement invasive forms of surveillance
or social media monitoring, thus raising privacy concerns.
The benchmark proposed in this manuscript is just a tool
whose purpose is to provide a systematic and standardized
approach to testing and comparing different Visual Geo-

localization algorithms. As such, it cannot offer guaran-
tees on the final use of the algorithms that it will help to
evaluate. Therefore, we urge all researchers using this tool
to be mindful of the potential misuses of their algorithms.
For what concerns data, the framework relies only on pre-
existing and publicly available datasets that are widely used
in the community and focus on places rather than humans,
and thus are considered safe to use.

References
[1] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(6):1437–
1451, 2018. 1, 4, 6, 12

[2] Artem Babenko and Victor Lempitsky. Aggregating deep
convolutional features for image retrieval. ICCV, 10 2015.
4, 6

[3] Artem Babenko and Victor S. Lempitsky. The inverted multi-
index. In CVPR, pages 3069–3076. IEEE Computer Society,
2012. 9

[4] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham,
T. Pylvänäinen, K. Roimela, X. Chen, J. Bach, M. Pollefeys,
B. Girod, and R. Grzeszczuk. City-scale landmark identifi-
cation on mobile devices. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 737–744, 2011. 1

[5] M. Cummins and P. Newman. Highly scalable appearance-
only slam - FAB-MAP 2.0. In Robotics: Science and Sys-
tems, 2009. 1

[6] Jiankang Deng, J. Guo, and S. Zafeiriou. ArcFace: Addi-
tive angular margin loss for deep face recognition. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4685–4694, 2019. 11

[7] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. End-to-end
learning of deep visual representations for image retrieval.
IJCV, 2017. 4

[8] Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford,
and Tobias Fischer. Patch-netvlad: Multi-scale fusion of
locally-global descriptors for place recognition. In Proceed-



ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14141–14152, 2021. 1, 14

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016. 4

[10] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Trans. Big Data,
7(3):535–547, 2021. 3

[11] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Prod-
uct quantization for nearest neighbor search. IEEE Trans.
Pattern Anal. Mach. Intell., 33(1):117–128, 2011. 9

[12] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm.
Learned contextual feature reweighting for image geo-
localization. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3251–3260, 2017.
6, 12

[13] Giorgos Kordopatis-Zilos, Panagiotis Galopoulos, S. Pa-
padopoulos, and Y. Kompatsiaris. Leveraging efficientnet
and contrastive learning for accurate global-scale location
estimation. ACM International Conference on Multimedia
Retrieval, 2021. 4, 6

[14] Yunpeng Li, Noah Snavely, Daniel Huttenlocher, and Pascal
Fua. Worldwide Pose Estimation using 3D Point Clouds. In
European Conference on Computer Vision, 2012. 1, 4

[15] Dongfang Liu, Yiming Cui, Liqi Yan, Christos Mousas, Bai-
jian Yang, and Yingjie Chen. DenserNet: Weakly super-
vised visual localization using multi-scale feature aggrega-
tion. Proceedings of the AAAI Conference on Artificial Intel-
ligence, pages 6101–6109, May 2021. 1

[16] Yu A. Malkov and D. A. Yashunin. Efficient and robust ap-
proximate nearest neighbor search using hierarchical naviga-
ble small world graphs. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 42:824–836, 2020. 9

[17] Michael Milford and G. Wyeth. Mapping a suburb with a sin-
gle camera using a biologically inspired slam system. IEEE
Transactions on Robotics, 24:1038–1053, 2008. 1

[18] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,
and Bohyung Han. Large-scale image retrieval with attentive
deep local features. In IEEE International Conference on
Computer Vision, 2017. 10, 11

[19] F. Radenović, G. Tolias, and O. Chum. Fine-tuning CNN
Image Retrieval with No Human Annotation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2018.
4, 6, 10

[20] A. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Visual In-
stance Retrieval with Deep Convolutional Networks. CoRR,
abs/1412.6574, 2015. 4, 6

[21] Jérôme Revaud, Jon Almazán, R. S. Rezende, and
César Roberto de Souza. Learning with average precision:
Training image retrieval with a listwise loss. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
5106–5115, 2019. 4, 10

[22] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature
matching with graph neural networks. In CVPR, 2020. 14

[23] Josef Sivic and Andrew Zisserman. Video google: A text
retrieval approach to object matching in videos. In ICCV,
pages 1470–1477. IEEE Computer Society, 2003. 9

[24] Giorgos Tolias, R. Sicre, and H. Jégou. Particular object re-
trieval with integral max-pooling of CNN activations. CoRR,
abs/1511.05879, 2016. 4, 6

[25] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T.
Pajdla. 24/7 place recognition by view synthesis. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
40(2):257–271, 2018. 1, 4

[26] A. Torii, J. Sivic, M. Okutomi, and T. Pajdla. Visual place
recognition with repetitive structures. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(11):2346–
2359, 2015. 1

[27] A. Torii, Hajime Taira, Josef Sivic, M. Pollefeys, M. Oku-
tomi, T. Pajdla, and Torsten Sattler. Are large-scale 3d mod-
els really necessary for accurate visual localization? IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43:814–829, 2021. 1, 4

[28] Frederik Warburg, Soren Hauberg, Manuel Lopez-
Antequera, Pau Gargallo, Yubin Kuang, and Javier Civera.
Mapillary street-level sequences: A dataset for lifelong
place recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, June 2020. 1, 4

[29] Tobias Weyand, A. Araújo, Bingyi Cao, and Jack Sim.
Google landmarks dataset v2 – a large-scale benchmark for
instance-level recognition and retrieval. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2572–2581, 2020. 4, 10, 11

[30] Shuhei Yokoo, Kohei Ozaki, Edgar Simo-Serra, and S.
Iizuka. Two-stage Discriminative Re-ranking for Large-scale
Landmark Retrieval. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
pages 4363–4370, 2020. 11

[31] Jun Yu, Chaoyang Zhu, Jian Zhang, Qingming Huang,
and Dacheng Tao. Spatial pyramid-enhanced netvlad with
weighted triplet loss for place recognition. IEEE Transac-
tions on Neural Networks and Learning Systems, 31(2):661–
674, 2020. 1

[32] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2017. 4, 10, 11


