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1. Further information on SF-XL

General information. In Fig. 1 we show the density of the
training set (i.e. number of panoramas within each cell), in
Fig. 2 is its temporal distribution, and in Fig. 3 we show
the temporal variability of SF-XL test v1’s queries. The
StreetView images composing the train set, val set and test
database, are 512× 512 images cropped from 360° panora-
mas.

SF-XL test v1. While the database from SF-XL test v1
is very homogeneous, given that StreetView images are all
taken at daytime with the same camera and good weather,
the queries present large degrees of domain changes: there
are night images, grayscale, with heavy changes in view-
point and occlusions. Coming from the crowd-sourced plat-
form Flickr, these queries are collected by a large number
of users, also ensuring variety in the typologies of cameras.
We resized these images so that their shorter side is 480 pix-
els. In Fig. 4, we show more examples of queries, besides
the ones shown in Fig. 2 of the main paper.

SF-XL test v2. While the database of SF-XL test v2 is the
same as SF-XL test v1, the two sets use different queries.
With the advantage of having 6 DoF labels, SF-XL test v2
can also be used for pose estimation. The downside of this
set is the homogeneity among its images, given that almost
all are taken during sunny days, with clear views and with-
out heavy occlusions. Some examples of the queries are
shown in Fig. 4.

2. Experiments

2.1. Further ablations

In this section, we provide further results obtained by
changing the hyperparameters of CosPlace to better under-
stand their correlations to the final results.

In Fig. 5 we report an extensive ablation obtained by
changing the parameters used to split the dataset into groups
and classes, namely M , α, N and L, as well as using a dif-
ferent number of groups for training. Among other results,

Figure 1. Histogram showing how many cells contain a given
number of panorama. We can see that cells with only one
panorama (which are discarded at train time as explained in
Sec. 2.2) are the most common. Note that the y axis is in loga-
rithmic scale. The side of each cell (i.e. the hyperparameter M ) is
M = 10 meters, as in our final experiments.

Figure 2. Number of 360°panorama of SF-XL for each given
year.

Figure 3. Number of queries from SF-XL test v1 for each given
year.
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Figure 4. Examples from SF-XL. The first two rows of images are from the train set, the next two from the queries of SF-XL test v1, and
the last two rows from the queries of SF-XL test v2.

Figure 5. Full ablation on each hyperparameter. On the x axis are values for the hyperparameters, and on the y axis their respective
recall@1 on the SF-XL val set, computed with a ResNet-18. Values in bold are the chosen ones for all experiments besides ablations, and
the red line represents their recall@1.

we see in the rightmost plot that using just a single group
for training the model leads to a drop in recall@1 of just
1%, and that the optimal results are achieved using 8 of the
50 groups.

To better understand the importance that the GeM pool-
ing [12] has within the architecture used for CosPlace, we
provide a set of experiments by replacing it with the aver-
age or max pooling in Tab. 1. From the table, we can see



Pooling Pitts250k Pitts30k Tokyo 24/7 MSLS St Lucia
Average 88.5 87.6 73.7 78.5 98.7
Max 90.8 89.3 78.1 80.5 98.7
GeM 90.4 89.5 81.6 81.8 98.8

Table 1. Ablation over different pooling layers. This table shows
results obtained by replacing the GeM layer with a max or average
pooling. Results refer to the recall@1 obtained with a ResNet-18.

that CosPlace would outperform the previous state-of-the-
art even with a standard architecture used for classification,
made of a CNN backbone, a max pooling, and a fully con-
nected layer.

2.2. Further implementation details

Regarding CosPlace training, to ensure that each class is
well represented, only cells with at least 10 panoramas are
considered for training, effectively discarding about 15% of
the images. The hyperparameters of M = 10, α = 30,
N = 5, and L = 2 lead to the creation of 50 groups, where
each group ends up with roughly 35k classes, and each class
contains on average 19.8 images. As explained in the main
paper, we only train on 8 (out of 50) groups, which together
contain roughly 5.6M images. Note that the total size of the
SF-XL training set is 41.2M (i.e., we only use 13.6% of the
images), meaning that train-time scalability is a factor that
can still be vastly improved in future works.

We use the Adam optimizer [7] with a learning rate of
0.00001, and a batch size of 32 images. We use color jit-
tering as in [3]. For results to be fair with [3], which uses
a smart region cropping method, we also employ random
cropping. Finally, the margin of the cosFace loss is set to
0.40.

Number of hyperparameters. Although CosPlace intro-
duces a considerable amount of hyperparameters, we also
note that there is no more need for many other ones used in
previous state-of-the-art methods [1, 3, 9], such as the num-
ber of negatives per query (usually set to 10), refresh rate
of the cache (1000), pool size of randomly sampled nega-
tives (1000), threshold distance for train-time potential pos-
itives (10 meters) and the number of cluster in NetVLAD
layer (64). Moreover, the intuitive meaning of the hyper-
parameters in CosPlace in comparison to the less obvious
mining hyperparameters makes it easier to set them using
common sense: for example, it is clear that a small M (or
α) leads to little intra-class spatial variations, while a large
M (or α) may cause two images of the same class to be
too different; similarly, using a small value for N leads to a
higher similarity between inter-class (but same group) im-
ages, while using a very high N leads to classes being very
geographically spread out, which can be a problem with
smaller datasets (because groups would have few classes).

2.3. Exploratory experiments

Further results on backbones and descriptors dimen-
sionality. Given that previous methods (as recent as 2021)
in Visual geo-localization rely on relatively old VGG-16
[13] or AlexNet [8] backbones [1,3,6,9–11,14], we believe
that this is widening an already large gap between research
and real-world applications, where one would want to ob-
tain the best possible results with the lowest computational
complexity. To narrow such a gap, we investigate how the
use of more recent backbones can enhance CosPlace and
lead to better results, smaller descriptors, and faster com-
putation. To this end, we train CosPlace using a number
of backbones, namely VGG-16 [13], ResNet-18, ResNet-
50, ResNet-101 [5], ViT [2], CCT224 and CCT384 [4]. All
CNN backbones (i.e., VGG-16 and ResNets) are followed
by a GeM pooling [12] and a fully connected layer, More-
over, we experiment with various powers of 2 (from 32-D
to 2048-D) as output dimension. Regarding transformers-
based neural networks, we use the 384-D SeqPool output of
CCT as descriptors, and for ViT, we obtain the 768-D output
by feeding the CLS token to a multi-layer perceptron with
tanh, following its original implementation [2]. Preliminary
results showed that directly using ViT’s CLS token led to
lower recalls.

Results from Fig. 6 clearly show that CosPlace presents
encouraging results regardless of the depth of the back-
bone, and we argue that future works should focus on more
modern architectures, such as the ResNets, which are gen-
erally faster, lighter and achieve comparable or better re-
sults than the commonly used VGG-16. We also see that
CosPlace is able to reach remarkable recalls and robust-
ness with very low dimensions; for example, we see that
any 128-D architecture trained with CosPlace outperforms
4096-D NetVLAD (which is trained on Pitts30k) on any test
dataset.

While transformers achieve lower results, we want to
point out that we used the same hyperparameters for all
experiments (e.g., same learning rate and optimizer), and
we believe that performing a proper hyperparameter tuning
independently for each backbone can increase the results
shown in Fig. 6, at the cost of a large number of experi-
ments. Moreover, while we used a resolution of 512× 512
for CNNs, transformers require a smaller size, respectively
224×224 for ViT and CCT224, and 384×384 for CCT384,
and this can provide a further explanation of the lower re-
sults with transformers.

Comparison with other methods using same descriptors
dimensionality. Given that CosPlace uses much lower di-
mensionality of descriptors, in Tab. 2 and Tab. 3 we report
the equivalent experiments of Tab. 3 and Tab. 4 of the main
paper, but using the same (512) dimensionality for all meth-
ods. We can see that in this scenario, the advantages of



Figure 6. Further results on backbones and descriptors dimensionality. Results on a number of datasets of CosPlace using different
backbones and dimensionalities, compared with SFRS and NetVLAD trained on Pitts30k.

Method Desc. dim. Train set Pitts250k Pitts30k Tokyo 24/7 MSLS St Lucia
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

GeM [12] 512 Pitts30k 75.3± 0.2 88.4± 0.3 77.9± 0.4 90.5± 0.3 46.4± 0.9 65.3± 0.7 51.8± 0.9 64.4± 0.9 59.9± 1.6 76.3± 2.0
GeM [12] 512 MSLS 65.3± 1.2 81.0± 1.6 71.6± 2.1 85.1± 1.9 44.9± 1.7 62.6± 1.2 66.7± 0.7 78.9± 0.5 84.6± 1.1 93.3± 0.7
GeM [12] 512 SF-XL* 64.7± 0.8 81.4± 0.8 67.8± 0.6 83.6± 0.7 37.9± 2.3 51.0± 2.1 46.8± 2.1 58.1± 1.2 68.5± 2.4 82.7± 1.8
NetVLAD [1] 512 Pitts30k 83.7± 0.3 92.8± 0.1 83.0± 0.2 92.6± 0.3 52.6± 1.1 70.9± 1.2 51.1± 1.0 63.5± 0.8 59.8± 0.5 74.5± 1.2
NetVLAD [1] 512 MSLS 74.6± 1.3 86.8± 1.2 77.0± 0.9 88.6± 1.2 50.5± 2.2 65.1± 1.7 72.6± 0.5 83.0± 0.3 92.6± 0.6 97.1± 0.4
NetVLAD [1] 512 SF-XL* 77.5± 0.5 88.5± 0.2 79.7± 0.3 90.0± 0.4 53.0± 0.9 70.2± 0.5 53.1± 3.2 64.2± 2.2 78.7± 1.6 88.1± 1.8
CRN [6] 512 Pitts30k 84.6± 0.6 93.6± 0.3 84.3± 0.2 92.7± 0.2 53.4± 0.5 70.6± 0.8 54.1± 0.6 66.1± 0.6 56.6± 2.7 75.5± 2.9
APANet [14] † 512 Pitts30k 83.7 92.6 - - 67.0 81.0 - - - -
SARE [9] 512 Pitts30k 84.3± 0.7 92.6± 0.4 84.7± 0.7 92.6± 0.5 62.0± 0.6 74.9± 0.4 55.8± 3.3 67.8± 3.3 63.4± 3.0 79.0± 1.9
SFRS [3] 512 Pitts30k 87.1± 0.4 94.6± 0.2 86.4± 0.5 93.8± 0.2 66.7± 1.0 79.6± 0.9 57.6± 1.1 68.9± 1.0 65.8± 3.1 80.1± 2.3
SRALNet [10] † 512 Pitts30k 84.8 93.5 - - 60.6 76.5 - - - -
APPSVR [11] † 512 Pitts30k 85.3 94.0 - - 62.0 76.5 - - - -
CosPlace (Ours) 512 SF-XL 89.3± 0.2 96.2± 0.3 88.5± 0.1 94.5± 0.2 82.2± 0.5 88.9± 0.9 79.6± 0.5 87.2± 0.4 94.1± 0.8 97.4± 0.1

Table 2. Comparisons of various methods on popular datasets with 512-D descriptors. This table is the equivalent of Tab. 3 in the
main paper, but here all descriptors have the same dimensionality.

Method Desc. dim. Train set SF-XL test v1 SF-XL test v2
R@1 R@5 R@10 R@1 R@5 R@10

GeM 512 Pitts30k 21.7 30.3 34.4 43.1 63.7 69.2
GeM 512 MSLS 8.1 15.6 20.2 29.3 46.3 53.8
GeM 512 SF-XL* 9.8 17.6 21.2 34.8 55.5 63.0
NetVLAD 512 Pitts30k 27.4 38.1 43.6 66.7 79.3 82.9
NetVLAD 512 MSLS 14.5 21.0 28.9 40.5 59.7 64.4
NetVLAD 512 SF-XL* 25.4 32.9 40.5 66.9 78.6 82.8
CRN 512 Pitts30k 31.4 43.0 49.7 68.2 81.3 83.3
SARE 512 Pitts30k 30.8 42.1 46.5 69.2 81.1 83.1
SFRS 512 Pitts30k 35.6 49.7 54.8 78.1 88.5 91.3
CosPlace (Ours) 512 SF-XL 65.1 73.6 77.6 83.4 92.1 94.8

Table 3. Comparisons of various methods on SF-XL test v1
and SF-XL test v2 with 512-D descriptors. This table is the
equivalent of Tab. 4 in the main paper.

CosPlace w.r.t. previous works are even more noticeable.

Comparison with models trained on Google Landmark.
In Tab. 4, we compare models trained using CosPlace on

SF-XL with models trained on two popular landmark re-
trieval (LR) datasets, namely the Google Landmark (GLD)
and SfM120k [12]. Models trained on GLD and SfM120k
are downloaded from the official repository of [12] 1, which
relied on a triplet loss for training. CosPlace can’t be used
on such landmark retrieval datasets, as they lack GPS coor-
dinates and heading labels.

Note that these experiments are not aimed at providing
a rigorous comparison of CosPlace vs triplet losses or SF-
XL vs standard retrieval datasets, given that the underlying
tasks (i.e. VG and LR) present many differences; we just
want to provide an intuition on how popular models trained
for LR fare on VG datasets.

1https : / / github . com / filipradenovic /
cnnimageretrieval-pytorch

https://github.com/filipradenovic/cnnimageretrieval-pytorch
https://github.com/filipradenovic/cnnimageretrieval-pytorch


Training Dataset Backbone Pitts250k Pitts30k Tokyo 24/7 MSLS St Lucia

SfM120k ResNet-50 84.5 83.4 75.2 64.5 73.9
GLD ResNet-50 85.8 84.1 77.8 69.5 77.3
SF-XL ResNet-50 92.3 90.9 87.3 85.2 99.5

SfM120k ResNet-101 85.0 83.9 77.5 64.7 76.3
GLD ResNet-101 86.9 85.1 77.8 72.4 83.4
SF-XL ResNet-101 91.8 90.5 88.9 86.7 99.7

Table 4. Comparison with models trained on large landmark
retrieval datasets. The models trained on SF-XL is trained with
CosPlace, while models trained on GLD and SfM120k rely on a
triplet loss. All models are equivalent (i.e. ResNets followed by a
GeM pooling and a fully connected layer with output dimension-
ality 512).

Comparison with other methods: qualitative results.
Figure 7 shows some qualitative results of retrieved images
with CosPlace compared to previous SOTA methods such
as NetVLAD [1], CRN [6], SARE [9] and SFRS [3].
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Figure 7. Qualitative comparisons of retrieved images for a number of methods.
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