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We present additional discussions and experiments, par-
ticularly the ablation study analyzing the effect of the shared
attention in our MulT model, the performances of our 4-
task and 5-task networks as well as the ablation study of
the effect of the network size on the different task com-
binations. We also analyze the number of parameters re-
quired by each model. We show additional qualitative re-
sults comparing the performance of the different models on
the Taskonomy [12] and Replica [9] benchmarks. Finally,
we discuss the environmental impact of training our model
and ways to mitigate it. The paper is organized as follows:

• Section 1: Effect of shared attention

• Section 2: Task combinations

• Section 3: Effect of network size

• Section 4: Parameter comparison

• Section 5: Additional qualitative results

• Section 6: Environmental impact

1. Effect of shared attention
To account for the task dependencies beyond sharing en-

coder parameters, we develop a shared attention mechanism
that integrates the information contained in the encoded fea-
tures into the decoding stream. Empirically, we have found
that the attention from the surface normal task stream ben-
efits our 6-task MulT model and we thus take this task as
reference task r, whose attention is shared across the tasks.

In Table 1, we show the relative performance of our 6-
task MulT model with a single-task dedicated Swin trans-
former baseline [7] under two settings. In the first setting
the 6-task MulT model is trained without the shared atten-
tion across the 6 tasks, whereas in the second setting our
MulT model is trained with the shared attention. The shared
attention mechanism benefits the performance of our MulT
model, allowing it to learn task inter-dependencies. The
models under both the scenarios comprise an increased size
of the network.

Feature fusion method. We further explore the different
feature fusion methods such as concatenation and cross-
attention. Concatenating all the features does not benefit
our network to learn task interdependencies, as observed
in our preliminary experiments, and was thus not reported.
Our method is a learnable fusion strategy, using a learnable
shared attention (SA) mechanism. We also tried the cross-
attention (CA) mechanism from CrossVit [2], but it did not
beat our SA mechanism in the given multitask setting, as
seen in Table 2
2. Task combinations

We now show the effect of different task combinations
on the relative performance of each task. From our exper-
iments in Table 3, we observe that the performance of 2D
keypoints, 2D edges and segmentation benefits from the in-
clusion of other tasks like surface normal estimation, depth
and reshading. In particular, surface normal estimation is
the most beneficial task for the other tasks. For instance,
any task with the combination of surface normal estimation,
leverages the surface statistics to improve its performance.

We also observe that increasing the number of tasks im-
proves the results of our MulT model, e.g., a 6-task net-
work outperforms a 5-task one, which in turn outperforms
a 4-task network. Note all the models in Table 3 are trained
with shared attention to learn task inter-dependencies.

3. Effect of network size

As more number of tasks are added to our MulT model,
we observe, as in [8], that effectively leveraging between
3 and 6 tasks required increasing the size of the network
modules. Altogether, reporting results for all possible task
combinations requires training (26 − 1) models. We see
that improving the network size has significant effect on the
relative performance of the different tasks. We quantita-
tively evaluate all the task combinations in the 4-task, 5-task
and 6-task settings; with and without an increase in the net-
work size. For the normal network size, we use swin-T as
the backbone [7] containing (2, 2, 6, 2) transformer blocks
in the respective stages of the encoder, whereas for the in-
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Relative Performance On
S D N K E R

6-task MulT w/o shared attention +15.0% +8.13% +6.92% +42.9% +81.3% +14.8%
6-task MulT w/ shared attention +19.7% +10.2% +8.72% +94.75% +88.8% +16.4%

Table 1. Effect of shared attention on our MulT model. We show the relative performance of our 6-task MulT model with a single-task
dedicated Swin transformer baseline [7] under two settings- without and with the shared attention mechanism. Note that under both the
settings, our MulT model comprises the increase network size. We show, the relative performance percentage for each task evaluated by
taking the percentage increase or decrease w.r.t. the single-task dedicated Swin transformer baseline [7]. The shared attention mechanism
benefits the performance of our MulT model, allowing it to learn task inter-dependencies. The results here are reported on the Taskonomy
test set. Bold and underlined values show the best and second-best results, respectively.

Relative Performance for 6 task MulT vs 1-task SWIN on Taskonomy
S D N K E R

MulT w/ CA +1.06% +5.11% -3.33% +13.3% +25.9% +0.06%
MulT w/ SA +19.7% +10.2% +8.72% +94.75% +88.8% +16.4%

Table 2. Quantitative comparison of training the 6-task MulT
model on the Taskonomy benchmark [12] with Cross attention
(CA) [2] and our proposed shared attention (SA). Our shared
attention mechanism benefits MulT where it consistently outper-
forms the MulT with CA method. Bold values show the best re-
sults.

creased network we use swin-L [7] as the backbone contain-
ing (2, 2, 18, 2) transformer blocks in the respective stages
of the encoder. The increase in the number of transformer
blocks in the third stage of the encoder in the swin-L back-
bone helps to accommodate the increased number of tasks.
Our best performing MulT model comprises the increased
network size and shared attention.

In Table 3, we observe that increasing the number of
tasks improves the results of our MulT model, where a 6-
task network outperforms a 5-task one, which in turn out-
performs a 4-task network. Note all the models in Ta-
ble 3 are trained with shared attention to learn task inter-
dependencies.

4. Parameter comparison
We show the number of parameters learnt by our 6-task

MulT model without an increased network size and com-
pare it to the number of parameters learnt by the multitask-
ing Resnet50 baseline and the single dedicated Swin-Tiny
(Swin-T) baseline. Further, we show the number of param-
eters learnt by our 6-task MulT model with an increased net-
work size and compare it to the number of parameters learnt
by the multitasking Resnet152 baseline and the single dedi-
cated Swin-Large (Swin-L) baseline. We see that our MulT
model, both without and with an increased network size,
is more parameter efficient than the 1-task dedicated Swin-
T and Swin-L models, respectively. Note that the number
of parameters and the inference time of six 1-task Swin-T
models and six 1-task Swin-L models are added to get the
total number of parameters and the total inference time for
all the six tasks. Our MulT model learns more number of

parameters than the multitasking CNN baselines [3] but in-
fers the final predictions across the six tasks in comparable
time.

5. Additional qualitative results
We qualitatively compare the results of our MulT model

with different CNN-based multitask baselines [4, 8, 11, 12],
as well as with the single task dedicated Swin trans-
former [7]. The results in Figure 1 and Figure 2 show the
performance of the different networks across multiple vi-
sion tasks on the Taskonomy benchmark [12] and Replica
test set [9], respectively. All the multitasking models are
jointly trained on the six tasks on the Taskonomy bench-
mark, and the single task dedicated Swin models are trained
on the respective tasks. Our MulT model yields higher-
quality predictions than both the single task Swin baselines
and the multitask CNN baselines.

6. Environmental impact
Models consume power both during training as well as

during inference. However, a bigger source of energy con-
sumption today comes from after the models are deployed,
i.e. during the inference stage [1]. Nvidia estimated that
in 2019, 80–90% of the cost of a model is in the inference.
To worsen this, machine learning practitioners waste a ton
of resources on redundant training [1]. By being a multitask
framework, our MulT model helps to reduce the power con-
sumption during inference unlike the single task baselines
that need to be run multiple times to achieve the predictions
on the different tasks. A shown in Table 4, our MulT model
requires less inference time than the single task transformer
baselines while reporting better performance. Nonetheless,
running our MulT model in the cloud takes 21 hours to train
on 32 Nvidia V100-SXM2-32GB GPUs, where a single
GPU emits 3.11kg of CO2 with a CO2 offset of 1.55kg [5].
This is equivalent to 12.5 kilometers driven by an average
car [6]. To mitigate, the carbon footprint of training our
model we have reputable carbon offsets as well as follow a
centralised cloud infrastructure with sustainable power sup-
plies. Furthermore, by employing an efficient shared atten-
tion mechanism as [10], that operates in linear time, we can
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Effect of the network size on different task combinations for Taskonomy test [12]
w/ increased network size w/o increased network size

No. of Tasks Trained on S D N K E R S D N K E R

4-task MulT

S +D +N +K +13.8% +8.36% +6.91% +82.2% - - +7.84% +6.95% +5.07% +75.4% - -
S +D +N + E +14.0% +8.38% +7.05% - +74.9% - +8.08% +7.11% +5.10% - +63.3% -
S +D +N +R +14.2% +8.55% +7.17% - - +9.13% +8.11% +7.20% +5.33% - - +6.77%
S +D +K + E +13.5% +8.08% - +73.0% +74.6% - +7.41% +6.84% - +67.7% +62.7% -
S +D +K +R +14.0% +8.22% - +72.4% - +8.91% +8.03% +6.95% - +66.2% - +6.39%
S +D + E +R +14.3% +8.30% - - +73.1% +9.04% +8.22% +6.98% - - +61.5% +6.73%
S +N + E +R +15.0% - +7.13% - +73.9% +9.17% +8.80% - +5.28% - +61.8% +6.80%
S +N +K +R +14.9% - +7.01% +87.5% - +8.99% +8.61% - +5.12% +79.0% - +6.45%
S +N +K + E +14.7% - +6.89% +88.4% +75.4% - +8.55% - +5.05% +79.7% +66.9% -
S +K + E +R +13.7% - - +73.5% +74.5% +8.97% +7.72% - - +68.9% +62.5% +6.42%
D +K + E +R - +7.91% - +73.3% +74.8% +9.88% - +6.63% - +68.4% +63.0% +7.00%
D +N +K +R - +8.44% +7.20% +87.0% - +10.3% - +7.15% +5.40% +78.8% - +7.33%
D +N + E +R - +8.63% +7.25% - +75.5% +11.1% - +7.29% +5.49% - +66.8% +8.12%
D +N +K + E - +8.40% +7.10% +87.2% +75.8% - - +7.12% +5.20% +79.2% +67.0% -
N +K + E +R - - +7.12% +88.8% +75.0% +10.6% - - +5.27% +80.1% +66.1% +7.74%

5-task MulT

S +D +N +K + E +17.2% +9.07% +8.11 % +92.5 % +82.6% - +11.6% +7.75% +6.16% +89.9% +72.5% -
S +D +N +K +R +17.7% +9.10% +7.59% +92.0% - +12.9% +12.0% +7.91% +5.94% +89.5% - +10.0 %
S +D +N + E +R +16.9% +9.22% +8.26% - +82.9% +12.7% +10.8% +8.08% +6.47% - +72.9% +9.71%
S +D +K + E +R +15.1% +8.86% - +75.0% +78.8% +10.2% +9.10% +7.47% - +70.7% +67.7% +7.80%
S +N +K + E +R +18.3% - +7.33% +94.1% +82.2% +13.0% +12.5% - +5.55% +91.9% +72.2% +10.3%
D +N +K + E +R - +9.77% +8.06% +93.9% +82.6% +13.8% - +8.33% +6.11% +91.6% +72.5% +10.7%

6-task MulT S +D +N +K + E +R +19.7% +10.2% +8.72% +94.7% +88.8% +16.4% +13.8% +9.11% +6.99% +92.5% +78.3% +12.9%

Table 3. Quantitative comparison of training different task combinations in our MulT model on the Taskonomy benchmark [12].
Increasing the number of tasks improves the results of our MulT models, where a 6-task network outperforms a 5-task one, which in
turn outperforms a 4-task network. Note all the models are trained with shared attention to learn task inter-dependencies. The relative
performance percentage for each task is evaluated by taking the percentage increase or decrease w.r.t. the single-task swin [7] baseline.
Bold and underlined values show the best and second-best results, respectively.

Parameter Comparison
Model No. of Params (M) Inference time (ms)
Multitasking Resnet50 [3] 153.6 12
six 1-task Swin-T [7] 344 90
MulT w/o increased network 231 13
Multitasking Resnet152 [3] 361.2 27
six 1-task Swin-L [7] 728 198
MulT w/ increased network 545 29

Table 4. Parameter comparison of our 6-task MulT model with
the baselines. We see that our MulT model, both without and with
an increased network size, is more parameter efficient than the
1-task dedicated Swin-T and Swin-L models, respectively. Note
that the number of parameters and the inference time of six 1-task
Swin-T models and six 1-task Swin-L models are added to get
the total number of parameters and the total inference time for all
the six tasks. Further, our MulT model learns more number of
parameters than the multitasking CNN baselines [3] but infers the
final predictions across the six tasks in comparable time.

extend our mitigation efforts and reduce the overall hours
of GPU computation.
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Figure 1. Qualitative comparison on the six vision tasks of the Taskonomy benchmark [12]. From top to bottom, we show qualitative
results using MTL [4], Taskonomy [12], Taskgrouping [8], Cross-task consistency [11], the single-task dedicated Swin transformer [7]
and our six-task MulT model. We show, from left to right, the input image, the semantic segmentation results, the depth predictions, the
surface normal estimations, the 2D keypoint detections, the 2D edge detections and the reshading results for all the models. All models
are jointly trained on the six vision tasks, except for the Swin transformer baseline, which is trained on the independent single tasks. Our
MulT model outperforms both the single task Swin baselines and the multitask CNN based baselines. Best seen on screen and zoomed
within the yellow circled regions.
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Figure 2. Qualitative comparison on the three vision tasks of the Replica benchmark [9]. From top to bottom, we show qualitative
results using MTL [4], Taskonomy [12], Taskgrouping [8], Cross-task consistency [11], the single-task dedicated Swin transformer [7]
and our six-task MulT model. We show, from left to right, the input image, the depth predictions, the surface normal estimations and
the reshading results for all the models. All models are jointly trained on the six vision tasks of the Taskonomy benchmark and are then
fine-tuned to the Replica official training set, except for the Swin transformer baseline, which is trained on the independent single tasks.
Our MulT model outperforms both the single task Swin baselines and the multitask CNN based baselines. Best seen on screen and zoomed
within the yellow circled regions.
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