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1 Comparative Study with different RL methods

We compare with different RL methods [5, 1], starting from Vanilla Policy Gradient, Deep Q-Learning,
TRPO, to variants of PPO. For our use-case we get best results (Table 1) with PPO actor-critic version
with clipped surrogate objective, where the critic network leads to one important byproduct of modelling

retrieval ability of partial sketches.

Table 1: Performance analysis using different RL approaches.
Chair-V2 Shoe-V2
Acc@Ql Acc@5 Acc@l Acc@5
Vanilla Policy Gradient 61.4 % 78.6% 40.1% 71.9%
Deep Q-Learning 61.9% 78.9% 40.7% 71.8%
TRPO 60.8% 782% 39.8% T70.2%
PPO Actor-Only KL 62.8% 78.5% 42.3% 72.8%
PPO Actor-Only Clipped 63.9% 78.9% 43.1% 74.5%
PPO Actor-Critic KL 63.8% 787% 421% 73.7%
PPO Actor-Critic Clipped 64.8% 79.1% 43.7% 74.9%

2 Comparative Study with different reward functions

We conducted experiments with different possible reward designs as shown in Table 2. Empirically, we
found that combining rewards from both ranking and feature embedding space through triplet loss offers

most optimum performance.

*Interned with SketchX



Table 2: Performance analysis using different reward designs.

Chair-V2 Shoe-V2
Rewards Acc@Ql Acc@Q5 Acc@Ql Acc@5b
-rank 63.5 % 78.6% 42.6% 73.7%
P 64.2% 78.8% 43.2% 74.2%
Liriplet 62.4% 781% 41.6% 72.7%
1
Tt 60.2% 77.3% 38.8% 68.6%
e Liviprer  64.8% 79.1% 43.7% T74.9%
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Figure 1: (a) Retrieval ability of partial sketch: correlation between critic network V(S) predicted score
and ranking percentile (b) Performance at varying training data size with stroke-subset selector based data
augmentation.

3 Classification Ability and Data Augmentation for sketch classi-
fication

Similar to fine-grained retrieval [4, 2], we extend our RL-based stroke-subset selector framework for clas-
sification task to judge if the critic network could be used to judge the recognition potential from partial
sketch. To this end, we use negative of cross-entropy loss as the reward to train the stroke-subset selector
under a pre-trained sketch classification network (Resnet50) on TU-Berlin dataset [3]. We obtain a similar
correlation between critic network predicted score and classification accuracy as shown in Fig. 1. In brief,
the samples having higher scalar score predicted by the critic network tends to have a higher classification
accuracy, thus proving the efficiency of modelling recognition ability of sketches through our framework.

Similarly, one can use the stroke-subset selector (policy network) to augment the sketches for classification
problem. Performance at varying training data regime is shown in Fig. 1 on TU-Berlin dataset.

4 Motivation on removing “fear” for sketching

By removing “fear”, we meant injecting that extra confidence to the users, knowing that even if they can
not sketch well, the system will still be able to return favourable results.



5 What happens with extreme cases?

The extreme case of completely random junk can be handled by our critic network, which will assign a low
retrieval ability score, helping us to sidestep such unusable instances. On the other hand, critic network
assigns progressively higher score for sketches from professional artists, and achieves retrieval threshold much
earlier. Fig. 2 offers examples of how the critic score changes for a good/professional sketch (top) and a
complete random one (bottom).
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Figure 2: Critic score at progressive sketch drawing episode.
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6 Clarity of binary stroke selection scheme

In our framework, we have modelled the stroke selection through categorical distribution (softmax normal-
isation over R?). However, as the reviewer suggested, one could model using Bernoulli distribution where
the stroke selector would predict a single sigmoid normalised scalar value R'. We tried both approaches and
empirically found the use of categorical distribution to be more stable with faster convergence and quanti-
tatively better results (by 1.41% Acc@1 on ShoeV2). We will specifically mention this in the supplementary
with a thorough ablative study upon acceptance.

7 Training-time comparison with baselines

For the baselines, we do not augment the sketches using all possible stroke-subset combinations (with cost
O(2N)). Taking into account all possible stroke subsets not only slows down the training data-pipeline, but
many of these augmented sketch subsets are too coarse/incomplete to convey any useful information about
the paired photo. Some initial experiments indicated model collapse due to noisy gradients raised from such
overly coarse/incomplete sketch-subsets. Therefore, in order to eliminate noisy gradients in the baselines,
we drop strokes at random while ensuring that the percentage of sketch vector length never falls below a
certain threshold — 80% was empirically found to yield optimum performance.

To ensure fair comparisons, we also keep each model training until we find no further improvement in
both the loss value and accuracy on the validation set for consecutive 20K iterations. Furthermore, under
our experimental setup, the training time for all baselines as well as our method lies between 12-14 hours,
ensuring a largely uniform training time for all.



8 Clarity on Training dataset

We use 6051+1800 images to train both the retrieval model and stroke-subset selector. In particular, first,
we pre-train the retrieval model on raster sketches. Next, we use the sketch-vector modality of the same set
of sketches to train the stroke-subset selector. It should be noted that while the retrieval model trained from
raster sketches is unaware of stroke-specific importance for retrieval, the stroke-subset selector intelligently
manages to eliminate the noise/inconsistent sketch strokes. Testing is done on the remaining 6794200 images
which are never used in either stage of the training.

9 Comparison with soft-attention

In order to deal with partial sketches, one alternative is indeed to apply soft-spatial attention in raster-space,
as used in Triplet-Attn-HOLEF [6]. Through fusing Triplet-Attn-HOLEF with our Augment baseline, we de-
vise a new baseline Triplet-Attn-HOLEF+Augment, which is able to achieve Acc@1(Acc@5) of 34.6%(68.9%)
on the ShoeV2 dataset. This is slightly better than the Augment baseline but significantly falls behind our
final results. This further verifies the necessity of our stroke-subset selector to deal with the erroneous/noisy
strokes that are inherent to the drawing process.

10 Limitations

Cross-dataset generalisation for the stroke-subset selector in particular is an intriguing research direction,
which we intend to cover in the future. Also, replacing the non-differentiable rasterization operation (sketch-
vector to sketch-image) with a differentiable approximated one would be an interesting direction to explore
too. This would make the whole pipeline end-to-end differentiable, so it can backpropagate the gradient cal-
culated from triplet loss directly onto the stroke-subset selector without needing any RL-based formulation,
ultimately increasing stability and pace of training.
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