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In this appendix, we provide additional information and
ablation studies relating to QB-NORM. We begin by pro-
viding more details about the datasets used for each task
(Sec. 1). We then provide ablation studies that investi-
gate: (1) The influence of the k hyperparameter on the pro-
posed DIS normalisation scheme (Sec. 2); (2) Whether ef-
fective querybanks can also be constructed from the training
set using IS normalisation, rather than DIS normalisation
(Sec. 3); (3) How embedding dimensionality influences the
effectiveness of QB-NORM (Sec. 4). Next, we present com-
parisons on additional datasets for the text-video retrieval
task (Sec. 5). In Sec. 6 we discuss the complexity of each
normalisation technique. In Sec. 7 we present a comparison
with CENT [36] normalisation. Then, we provide details on
the skewness metric reported in the submission (Sec. 8), of-
fer a more complete set of metrics across ablations (Sec. 9)
and give more details about the text and video experts used
in this work (Sec. 10). Finally, we report metrics indicating
how QB-NORM performs on video-text retrieval (Sec. 11)
and provide some additional qualitative results (Sec. 12).

1. Dataset details
In this section, we describe the splits and datasets em-

ployed for all tasks considered in this work.

1.1. Text-video retrieval

For the task of text-video retrieval we test our approach
on seven current benchmarks.

MSR-VTT [43] contains around 10k videos, each hav-
ing 20 captions. For the task of text-video retrieval, we fol-
low prior works [9, 23] and we report results on the offi-
cial split (full) which contains 2,990 videos for testing
and 497 for validation. Since a number of recent works
[9, 15, 23, 29] also report results on the 1k-A split, we com-
pare against these method on this split as well. The 1k-A
split contains 1,000 videos for testing and around 9,000 for
training. We use the same videos and captions as defined

*Equal contribution. †Corresponding authors.

in [23] which are used by other works [15, 29, 45] for eval-
uation. We report the results using models trained for 100
epochs.

MSVD [5] has 1,970 videos and around 80k captions.
We report results on the standard split using in prior
works [9,23,39,44] which consists of 1,200 videos for train-
ing, 100 for validation and 670 for testing.

DiDeMo [1] has 10,464 videos. They are collected from
a large-scale creative commons collection [37] and are var-
ied in content (concerts, sports, pets etc.). For each video,
there are 3-5 pairs of descriptions. For the task of text-video
retrieval, we use the paragraph video retrieval protocol as
defined in prior works [9, 23, 46]. This means that we the
split consisting of 8,392 for training, 1,065 validation and
1,004 test videos.

LSMDC [32] contains 118,081 short video clips ex-
tracted from 202 movies. Each clip has a textual description
which consist in a caption which is extracted either from the
movie script or transcribed from descriptive video services
(DVS) for the visually impaired. We use the official splits
as defined in the Large Scale Movie Description Challenge
(LSMDC). The testing split contains 1,000 videos.

VaTeX [41] contains 3,4911 videos and has multilingual
captions in Chinese and English. Each video has 10 cap-
tions for each language. As for the other datasets, we follow
the same protocol as defined in prior works [6, 9, 29] and
use 1,500 videos for testing, while there are 1,500 videos
for validation. Please note that in this work, we use only the
English annotations.

QuerYD [27] has 1,815 videos for training, 388 for val-
idation and 390 for testing. The videos are extracted from
YouTube and are varied in content. The dataset has 31,441
textual descriptions. 13,019 of these are precisely localized
in the video with start time and end time annotations while
the other 18,422 are coarsely localized. In this work, we
do not use the localization annotations and report results
on the official splits following prior work on text-video re-
trieval [9].

ActivityNet [3] contains 20k videos and has around
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Querybank Source Data Topk R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
No querybank - 14.9±0.1 38.3±0.1 51.5±0.1 10.0±0.0

In Domain
MSR-VTT 1 17.0±0.1 41.3±0.1 54.1±0.1 8.6±0.5

MSR-VTT 2 17.1±0.1 41.7±0.1 54.5±0.1 8.0±0.0

MSR-VTT 3 17.1±0.1 41.8±0.1 54.6±0.1 8.0±0.0

MSR-VTT 5 17.1±0.1 41.9±0.1 54.7±0.1 8.0±0.0

MSR-VTT 10 17.1±0.1 41.9±0.1 54.7±0.1 8.0±0.0

Far Domain
LSMDC 1 14.9±0.1 38.3±0.1 51.2±0.1 10.0±0.0

LSMDC 2 14.8±0.0 38.0±0.0 51.0±0.0 10.0±0.0

LSMDC 3 14.7±0.0 37.9±0.0 50.9±0.0 10.0±0.0

LSMDC 5 14.6±0.0 37.8±0.0 50.8±0.0 10.0±0.0

LSMDC 10 14.5±0.0 37.5±0.0 50.4±0.0 10.0±0.0

Table 1. The influence of the k hyperparameter on DIS
normalisation. Performance is reported on MSR-VTT full
split [43], while querybanks of 5,000 samples are sampled from
the training sets of different datasets. We observe that for Far Do-
main querybanks, k = 1 performs the best, while retaining good
performance for In Domain querybanks.

100K descriptive sentences. The videos are extracted from
YouTube. We use a paragraph video retrieval as defined in
prior works [9,23,46]. We report results on the val1 split.
The training split consists of 10,009 videos, while there are
4,917 videos for testing.

1.2. Text-image retrieval

For text image retrieval, we report results on the
MSCoCo [7] dataset. It consists of 123k images with 5
captions for each sentence. We report results for the 5k test
split.

1.3. Text-audio retrieval

For text audio retrieval, we report results on the Audio-
Caps [22] dataset which comprises sounds with event de-
scriptions. We use the same setup as prior work [28] where
49,291 samples are used for training, 428 for validation and
816 for testing.

1.4. Image-to-image retrieval

CUB-200-2011 [40] contains 11,788 images with 200
classes. The training split consist of the first 100 classes
(5,863 images) while the testing split contains the remaining
classes (5,924 images). We use the same setup as used in
prior work [33].

Stanford Online Products [35] contains 120,053 im-
ages with products from 22,634 classes. We use the pro-
vided train and test splits containing 59,551 and 60,502 im-
ages respectively, as used in prior works [33, 35].

2. The influence of the Top-k hyperparameter
on DIS normalisation

In Tab. 1 we show the influence of k in the Top-k se-
lection employed when constructing the gallery activation
set (introduced in Sec. 3.4 of the main paper). We observe

Querybank Source Size R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
No querybank - 14.9±0.1 38.3±0.1 51.5±0.1 10.0±0.0

Training set 60k 17.3±0.1 42.1±0.2 54.9±0.1 8.0±0.0

Val set 10k 16.7±0.1 41.2±0.1 54.0±0.1 8.7±0.5

Test set 60k 17.5±0.0 42.4±0.1 55.1±0.0 8.0±0.0

Table 2. Effective querybanks can be constructed from the
training set. Performance is reported on MSR-VTT full
split [43] using IS normalisation. We observe that a querybank
of 60K samples from the training set performs comparably to a
test set querybank.

Figure 1. (Left): The influence of embedding dimension on
QB-NORM effectiveness. We observe that QB-NORM brings a
large increase in performance in all cases (Right): The influence
of number of used video embeddings on QB-NORM effective-
ness. We observe that our method is more effective with an in-
creased number of modalities.

that choosing k = 1 offers a good trade-off between good
performance when constructing In Domain querybanks and
robustness when constructing Far Domain querybanks. We
therefore use k = 1 for all reported experiments.

3. Can effective querybanks can be constructed
from the training set with IS normalisa-
tion?

In the main submission, we showed that effective query-
banks can be constructed from the training set when em-
ploying DIS normalisation. Here, we show that this prop-
erty also applies to IS normalisation, supporting our hypoth-
esis that Querybank Normalisation has the general property
of not requiring concurrent access to multiple test queries
for appropriate normalisation strategies. In Tab. 2 we report
the results of selecting queries from training, validation or
testing split to form the querybank when employing IS nor-
malisation. Similarly to DIS, we observe that training set
querybanks perform comparably to test set querybanks for
IS normalisation.

4. The influence of embedding dimensionality
on the effectiveness of QB-NORM

Radovanovic et al. [31] posit that hubness is a phe-
nomenon that is: (i) inherent to high dimensional spaces;
(ii) heavily influenced by the intrinsic dimensionality of
the data. To investigate these perspectives, we study the
improvement yielded by QB-NORM over embeddings of
different dimensionality, reporting results in Fig. 1 (left).



Model R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Dual [11] 7.7 22.0 31.8 32.0
HGR [6] 9.2 26.2 36.5 24.0

MoEE [26] 11.1±0.1 30.7±0.1 42.9±0.1 15.0±0.0

CE [23] 11.0±0.0 30.8±0.1 43.3±0.3 15.0±0.0

CE+ [9] 14.4±0.1 37.4±0.1 50.2±0.1 10.0±0.0

CE+ (+QB-NORM) 16.4±0.0 40.3±0.1 53.0±0.1 9.0±0.0

TT-CE+ [9] 14.9±0.1 38.3±0.1 51.5±0.1 10.0±0.0

TT-CE+ (+QB-NORM) 17.3±0.0 42.1±0.1 54.9±0.1 8.0±0.0

CLIP4Clip [24]‡ 27.9 52.7 63.6 5.0
CLIP4Clip (+QB-Norm) 29.6 54.5 65.3 4.0

Table 3. MSR-VTT full split: comparison to state of the art.
‡ denotes results obtained training using the official code.

Model R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
MoEE [26] 16.1±1.0 41.2±1.6 55.2±1.6 8.3±0.5

CE [23] 17.1±0.9 41.9±0.2 56.0±0.5 8.0±0.0

TT-CE 21.0±0.6 47.5±0.9 61.9±0.5 6.0±0.0

Frozen [2] 31.0 59.8 72.4 3.0
CLIP4Clip [24] 43.4 70.2 80.6 2.0

CE+ [9] 18.2±0.2 43.9±0.9 57.1±0.8 7.9±0.1

CE+ (+QB-NORM) 20.7±0.6 46.6±0.2 59.8±0.2 6.3±0.5

TT-CE+ [9] 21.6±0.7 48.6±0.4 62.9±0.6 6.0±0.0

TT-CE+ (+QB-NORM) 24.2±0.7 50.8±0.7 64.4±0.1 5.3±0.5

CLIP4Clip [24]‡ 43.0 70.5 80.0 2.0
CLIP4Clip (+QB-NORM) 43.3 71.4 80.8 2.0

Table 4. DiDeMo: Comparison to state of the art methods.
‡ denotes results obtained training using the official code.

We observe that QB-NORM brings around the same gain
when changing the embedding size. We can interpret this
finding within the framework of [31] as making the state-
ment that changing the shared embedding dimensional-
ity does not influence intrinsic dimensionality. To pro-
vide further analysis, we make a crude approximation to
increasing/decreasing intrinsic dimensionality by increas-
ing/decreasing the number of modalities employed in the
video embedding. Intuitively, since audio provides a dif-
ferent “view” of a sample to visual data, we expect a joint
embedding with access to more modalities to exhibit higher
intrinsic dimensionality than one with only visual cues. We
plot the effect of these changes in Fig. 1 (right). We ob-
serve a slight increase in performance gain when applying
QB-NORM with an increased number of modalities, which
accords with the Radovanovic [31] hypothesis.

5. Additional text-video retrieval results

In Tab. 3, 6 we report additional comparisons with state
of the art on the MSR-VTT full split as well as Activi-
tyNet [3]. In both cases, we observe that QB-NORM yields
improvements. We also explore the use of QB-NORM with
CLIP4Clip [24]—for this, we train models using the code
made available by the authors. For CLIP4Clip experiments,
we use a β value of 0.45 with the exception of LSMDC
where β is 1.26−1.

Model R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
MoEE [26] 12.1±0.7 29.4±0.8 37.7±0.2 23.2±0.8

CE [23] 12.4±0.7 28.5±0.8 37.9±0.6 21.7±0.6

MMT [15] 13.2±0.4 29.2±0.8 38.8±0.9 21.0±1.4

Frozen [2] 15.0 30.8 39.8 20.0
CLIP4Clip [24] 21.6 41.8 49.8 11.0

CE+ [9] 14.9±0.6 33.7±0.2 44.1±0.6 15.3±0.5

CE+ (QB-NORM) 16.4±0.8 34.8±0.4 44.9±0.9 14.5±0.4

TT-CE+ [9] 17.2±0.4 36.5±0.6 46.3±0.3 13.7±0.5

TT-CE+ (QB-NORM) 17.8±0.4 37.7±0.5 47.6±0.6 12.7±0.5

CLIP4Clip [24]‡ 21.3 40.0 49.5 11.0
CLIP4Clip (+QB-NORM) 22.4 40.1 49.5 11.0

Table 5. LSMDC: Comparison to state of the art methods.
‡ denotes results obtained training using the official code.

Model R@1 ↑ R@5 ↑ R@50 ↑ MdR ↓
MoEE [26] 19.7±0.3 50.0±0.5 92.0±0.2 5.3±0.5

CE [23] 19.9±0.3 50.1±0.7 92.2±0.6 5.3±0.5

HSE [46] 20.5 49.3 − −
MMT [15] 22.7±0.2 54.2±1.0 93.2±0.4 5.0±0.0

SSB [29] 26.8 58.1 93.5 3.0
CLIP4Clip [24] 40.5 72.4 98.1 2.0

TT-CE+ [9] 23.5±0.2 57.2±0.5 96.1±0.1 4.0±0.0

TT-CE+ (+QB-NORM) 27.0±0.2 60.6±0.4 96.8±0.0 4.0±0.0

CLIP4Clip [24]‡ 36.3 65.9 96.8 3.0
CLIP4Clip (+QB-Norm) 41.4 71.4 97.6 2.0

Table 6. ActivityNet: Comparison to state of the art methods.
‡ denotes results obtained training using the official code.

6. The computational complexity of normalisa-
tion strategies

As discussed in the main paper in Sec.3.4, we use var-
ious normalization techniques in conjunction with QB-
NORM. In this section, we describe the computational cost
of each technique in the context of its influence on infer-
ence time. For clarity of exposition, we consider exact sim-
ilarity searches, but note that in practice approximate near-
est neighbour implementations are employed for large-scale
deployments [21]. All strategies incur an initial cost that
corresponds to pre-computing the similarity between a test
query and all the videos from the gallery, O(N), where N
represents the number of videos in the gallery. We further
assume that we have pre-computed and stored all similari-
ties between each query in the querybank and videos from
the gallery. This assumption incurs both computational and
storage costs of O(NM), where M represents the number
of queries in the querybank.

Globally-Corrected (GC) retrieval [10] involves deter-
mining the rank of the test query with respect to the query-
bank for each gallery item. Since we assume that we have
pre-computed similarities between the querybank and the
gallery, we also pre-compute an initial ranking over query-
bank elements for each gallery item. For each test query,
we establish its rank amongst the querybank for every tar-
get item by performing a binary search over the sorted list
of pre-computed similarities. This incurs an inference time
cost of O(N logM).



Figure 2. Distribution of number of times each video is retrieved before and after applying QB-NORM. We observe that QB-NORM

reduces the maximum number of retrievals for any individual video. Furthermore, we note that with QB-NORM, previously unretrieved
videos become possible to retrieve.

Cross-Domain Similarity Local Scaling (CSLS) [8] con-
sists of finding the most similar queries from the query-
bank for each gallery video and finding the K gallery videos
(here K is a hyperparameter of CSLS) that are most similar
to the test query. For the former, we can pre-compute, for
each video in the gallery, the K most similar queries from
the querybank and store the average similarity into a vector
of size N . For the latter, we must compute (during infer-
ence) the average similarity of the K most similar items
among the gallery to our test query. Using quickselect, this
can be done in O(N) time on average (note that we do not
require the top K element similarities to be sorted, since
they will be averaged).

Inverted Softmax (IS) [34] involves normalizing the final
similarity by the sum of the similarities given the query-
bank. However, the softmax denominator can be pre-
computed by summing the querybank similarities for each
gallery item and storing the results into a vector of size N .
During inference the similarities are divided by this pre-
computed sum, which adds only constant-time overhead.
Pre-computing the sum in this manner also reduces the stor-
age cost associated with the querybank from O(NM) to
O(N) (since we can discard the memory allocated to store
the similarities between each query in the querybank and
each video in the gallery).

Dynamic Inverted Softmax (DIS). Since DIS involves ap-
plying IS dynamically, the computation of the normaliza-
tion for each test query is done in constant time as described
above for IS. The additional gallery activation set employed
by DIS can be pre-computed and stored for an additional
O(N) storage cost. There is an additional cost during in-
ference: the top-1 search to determine the video originally
retrieved by the test query (which determines whether nor-
malisation is performed). This can be done in linear time
(O(N)).

7. Comparison to CENT

In Tab. 7 we show how CENT [36] normalisation per-
forms in comparison to an unnormalised baseline and
Querybank Normalisation with DIS. Since we found CENT
to consistently harm performance for cross-modal retrieval,
we did not include it in all experiments in the main paper.

Model R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Baseline 15.0 38.4 51.5 10.0

CENT [36] 14.4 37.2 50.2 10.0
DIS 17.3 42.1 54.9 8.0

Table 7. MSR-VTT full split Comparison with CENT for a seed
of TT-CE+ [9] model.

8. Hubness and Skewness

We use the skewness metric as defined in [31] to measure
hubness:

SNk
=

E(Nk − µNk
)3

σ3
Nk

(1)

where µNk
and σNk

are the mean and standard deviation
of Nk. Nk represents the k-occurrence distribution and is
defined as follows Nk(x) =

∑n
i=1 pi,k(x) where

pi,k(x) =

{
1, if x is among the k nearest neighbours of qi
0, otherwise.

(2)
Here x represents a video embedding and qi ∈ Q a set

of queries. To compute these statistics, In practice, we use
the we use k = 10, following [13] for the k-occurences
distribution, employing the implementation of [14].

As shown in Tab. 3 in the main paper, skewness and
hence hubness is reduced after applying QB-NORM. The
same can be seen in Fig. 2 which depicts the distribution
of number of times each video is retrieved before and after
using QB-NORM. We observe that the maximum number
of times a video is retrieved is reduced, indicating a hubness
reduction.

9. Additional ablations on other metrics

In the main paper, to maintain conciseness we report ab-
lation plots for the influence of querybank size and inverse
temperature using the geometric mean of R1, R5 and R10.
For completeness, in this section we show results on each
metric individually. As seen in Fig. 3, the individual met-
rics reflect the trend shown for the geometric means, align-
ing with the results shown in the main paper.



Figure 3. Retrieval results reported for a TT-CE+ [9] model on
the MSR-VTT [43] validation split in terms of R@1, R@5
and R@10. Left: The influence of querybank size on retrieval
performance. We observe that performance grows steadily with
increasing querybank size, but saturates. Right: The influence of
inverse temperature, β. Performance varies smoothly with inverse
temperature, peaking at a value of 20.

10. Video and text embeddings (experts) de-
scription used for video retrieval

For this work, we used the pretrained weights provided
by TT-CE+ [9] and CE+ [23] (https://github.com/
albanie/collaborative-experts). These mod-
els use a set of pretrained experts. Below, we summarise
how these experts were extracted.

• Two action experts are used: Action(KN) and Ac-
tion(IG). Action(KN) is a 1024-dimensional embed-
ding produced by an I3D architecture trained on Ki-
netics [4]. The embeddings are extracted from frame
clips at 25fps and center cropped to 224 pixels. For Ac-
tion(IG) the model is a 34-layer R(2+1)D [38], trained
on IG-65m [17]

• Two forms of object experts: Obj(IN) and Obj(IG).
For extracting Obj(IN) a SENet-154 [19] model trained
on ImageNet was used. For extracting Obj(IG) a
ResNext-101 [42] model trained on Instagram data
with weakly labelled hashtags [25] was used. Both
of the embeddings are extracted at 25fps.

• For producing an audio expert a VGGish model
trained from audio classification on the YouTube-8m
dataset [18] was used.

Model Task R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
CE+ [9] v2t 22.7±0.5 52.6±0.6 66.3±0.2 5.0±0.0

CE+ (+QB-NORM) v2t 28.6±0.4 58.9±0.5 71.4±0.5 4.0±0.0

TT-CE+ [9] v2t 24.6±0.3 54.1±0.3 67.5±0.5 4.7±0.5

TT-CE+ (+QB-NORM) v2t 30.1±0.4 61.4±0.4 73.2±0.4 3.0±0.0

Table 8. MSR-VTT full split: Comparison to state of the art -
v2t task.

• For the scene expert a DenseNet-161 [20] pretrained
on Places365 [47] was used. The scene embedding has
a 2208 dimension.

• For the speech expert, the Google Cloud API (to tran-
scribe the speech content) is used.

• For the text we use GPT2-xl [30] finetuned as provided
by the authors. The size of the final pre-trained embed-
ding is 1600.

For CLIP2Video [12] we used the model as it is pro-
vided online https://github.com/CryhanFang/
CLIP2Video. The model receives as input the raw
frames and raw queries. For CLIP4Clip [24], we use
the online code https://github.com/ArrowLuo/
CLIP4Clip and re-train the model for each dataset where
we present results since weights are not available online.
For the other tasks we followed the instructions given on
the official repositories. For MMT-Oscar [16] we used the
pretrained weights and the features provided at https:
//github.com/UKPLab/MMT-Retrieval. For
RDML [33] we used the models provided at https:
//github.com/Confusezius/Deep-Metric-
Learning- Baselines. For audio retrieval [28]
we used the pretrained weights and models provided
at https : / / github . com / oncescuandreea /
audio-retrieval.

11. v2t performance metrics
In Tab. 8 we report metrics indicating the performance

of QB-NORM on the reverse task of video-text retrieval
(in which videos are used as queries to retrieve descrip-
tions). We apply QB-NORM with DIS normalisation using
all videos from the training split to construct the querybank.
We observe that QB-NORM yields a striking boost in per-
formance.

12. Qualitative results
In Fig. 4 we provide some qualitative examples, illus-

trating cases for which the QB-NORM model correctly re-
trieves videos that are not retrieved without QB-NORM.
Examining failure cases, we found qualitative examples for
which the retrieval ranking produced with QB-NORM was
more “reasonable” (as shown in the bottom set of Fig. 4).
However, in line with prior work [31] suggesting that hub-
ness is a property of the distribution (rather than driven by

https://github.com/albanie/collaborative-experts
https://github.com/albanie/collaborative-experts
https://github.com/CryhanFang/CLIP2Video
https://github.com/CryhanFang/CLIP2Video
https://github.com/ArrowLuo/CLIP4Clip
https://github.com/ArrowLuo/CLIP4Clip
https://github.com/UKPLab/MMT-Retrieval
https://github.com/UKPLab/MMT-Retrieval
https://github.com/Confusezius/Deep-Metric-Learning-Baselines
https://github.com/Confusezius/Deep-Metric-Learning-Baselines
https://github.com/Confusezius/Deep-Metric-Learning-Baselines
https://github.com/oncescuandreea/audio-retrieval
https://github.com/oncescuandreea/audio-retrieval


(a)

(b)

(c)

Figure 4. Qualitative results for the text video retrieval task. We show queries and frames from the retrieved videos. For the first two
example queries, we observe that the use of QB-NORM leads to the retrieval of the correct target video. The third query represents a failure
case in which the target video is not retrieved. However, we nevertheless observe qualitatively that for this example, the video retrieved
with QB-NORM is more related to the query than the video retrieved without QB-NORM.



individual samples), we did not observe consistent, obvious
qualitative trends among the samples that were corrected, or
remaining failure cases. As an example, we observed gains
for queries with both shorter and longer, highly descriptive
captions.

References
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In Proceedings of
the IEEE international conference on computer vision, pages
5803–5812, 2017. 1

[2] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. 2021. 3

[3] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the ieee conference on computer vision and pattern
recognition, pages 961–970, 2015. 1, 3

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 5

[5] David L Chen and William B Dolan. Collecting highly paral-
lel data for paraphrase evaluation. In Proceedings of the 49th
Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1, pages
190–200. Association for Computational Linguistics, 2011.
1

[6] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
video-text retrieval with hierarchical graph reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10638–10647, 2020. 1,
3

[7] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C. Lawrence Zit-
nick. Microsoft coco captions: Data collection and evalu-
ation server. ArXiv, abs/1504.00325, 2015. 2

[8] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato,
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and Iryna Gurevych. Retrieve fast, rerank smart: Coopera-
tive and joint approaches for improved cross-modal retrieval.
arXiv preprint arXiv:2103.11920, 2021. 5

[17] Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan. Large-
scale weakly-supervised pre-training for video action recog-
nition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 12046–12055, 2019.
5

[18] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis,
Jort F. Gemmeke, Aren Jansen, Channing Moore, Manoj
Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm
Slaney, Ron Weiss, and Kevin Wilson. Cnn architectures for
large-scale audio classification. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2017.
5

[19] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks. IEEE transactions on pat-
tern analysis and machine intelligence, 2019. 5

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 5

[21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
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