
B-cos Networks: Alignment is All We Need for Interpretability

Supplementary Material

Moritz Böhle
MPI for Informatics

Saarland Informatics Campus

Mario Fritz
CISPA Helmholtz Center
for Information Security

Bernt Schiele
MPI for Informatics

Saarland Informatics Campus

Table of Contents

In this supplement to our work on B-cos DNNs, we provide:

(A) Additional qualitative results . 2
In this section, we show additional qualitative results of the model-inherent explanations. This includes
visualisations for the same model explored in the main paper (DenseNet-121)—both for the class-logits
and for intermediate neurons—as well as results for other B-cos networks.
Moreover, we provide additional comparisons to post-hoc importance attribution methods that were not
shown in the main paper.

(B) Additional quantitative results . 8
In this section, we show additional quantitative results. In particular, we present the localisation metric
results for two additional B-cos networks as well as those of the pre-trained conventional DNNs.
Moreover, we present ImageNet results for B-cos networks trained without any additional non-linearities
(apart from the B-cos transform) and for different model sizes.
Finally, we investigate the predictive power of the watermark neurons in more detail.

(C) Implementation details . 10
In this section, we describe the model architectures, the training procedure, and the evaluation of model
interpretability in more detail.

(D) Additional derivations and discussions . 11
In this section, we provide a short derivation for Eq. (3)→Eq. (9). Further, we provide a more detailed
explanation of the relevance of the image encoding for visualising the linear transforms W1→l(x).

1

B-cos Networks: Alignment is All We Need | Moritz Böhle	 D2-Schiele 23.11.2021 25

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#6365

CVPR
#6365

CVPR 2022 Submission #6365. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B-cos Networks: Alignment is All We Need for Interpretability

Anonymous CVPR submission

Paper ID 6365

Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#6365

CVPR
#6365

CVPR 2022 Submission #6365. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B-cos Networks: Alignment is All We Need for Interpretability

Anonymous CVPR submission

Paper ID 6365

Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#6365

CVPR
#6365

CVPR 2022 Submission #6365. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B-cos Networks: Alignment is All We Need for Interpretability

Anonymous CVPR submission

Paper ID 6365

Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

Bunting

94.08%
× =
Goldfinch

97.6%

Input image
Weights  

[W1→L(x)]c
Predictions

Fig. A1. Illustration of the computations of a B-cos network. For a given input image (left), the model computes an input-dependent lin-
ear transform W1→L(x) (center). The scalar product between the input and the weights [W1→L(x)]c for class c (row c of W1→L(x)),
yields the class logits for the respective class. To obtain class probabilities (right), we apply the sigmoid function. Since the B-cos net-
works are trained with the BCE loss, they produce probabilities per class and not a probability distribution over classes. Thus, the proba-
bilities do not sum to 1. For illustration purposes, we only visualise the positive contributions according to W1→L(x).

A. Additional qualitative examples
In Fig. A1, we illustrate how the linear mappings W1→L(x) are used to compute the outputs of B-cos networks. In

particular, with this we would like to highlight that these linear mappings do not only constitute qualitatively convincing
visualisations. Instead, they in fact constitute the actual linear transformation matrix that the model effectively applies to the
input to compute its outputs and thus constitute an accurate summary of the model computations.

A.1. Additional explanations for class logits [DenseNet-121]
Comparisons between explanation methods In Fig. A2, we show additional comparisons between the model-inherent
explanations based on the linear mapping [W1→L(xi)]c and some post-hoc methods; in particular, we show results for Grad-
Cam (GCam) [S8], LIME [S7], Integrated Gradients (IntG) [S10], DeepLIFT [S9], and RISE [S6] on the most confidently
classified image of the first 15 classes in Fig. A3. While GCam highlights similar regions and LIME also yields explanations
in color, these explanations are post-hoc approximations of model behaviour. In contrast, the model-inherent explanations are
not only of higher visual quality, but also summarise the model computations for the presented classes accurately, cf. Fig. A1.

Ou
rs

GC
am

LI
M

E
In

tG
De

ep
LI

FT
RI

SE
In

pu
ti

m
ag

e

Ou
rs

GC
am

LI
M

E
In

tG
De

ep
LI

FT
RI

SE
In

pu
ti

m
ag

e

Ou
rs

GC
am

LI
M

E
In

tG
De

ep
LI

FT
RI

SE
In

pu
ti

m
ag

e

Fig. A2. Comparison between the model-inherent explanations (‘Ours’) and various post-hoc explanation methods, evaluated for the most
confident image for the first 15 of the classes shown in Figs. A3 and A4. Note that for RISE we use its default colormap.

Model-inherent explanations. In Figs. A3 and A4, we present additional qualitative examples of the linear mappings
[W1→L(xi)]c that explain the class logit c in the B-cos DenseNet-121 model, see Eq. (13) in the main paper. Specifically,
we show the 3 most confidently classified examples for 48 different classes; these classes were selected as those that had the
highest mean confidence (sum of class logits) in the three most confidently classified images.

Note that due to the alignment pressure induced by the B-cos transform, the linear mappings [W1→L(xi)]c align with
class-discriminative features in the input images. Interestingly, we find that these features can be highly specific to particular
regions in the image (see, e.g., great grey owl, centipede, school bus, planetarium, three-toed sloth, parking meter), but can
also cover the entire image and include background features that correlate with the presented classes. For the latter, see e.g.,
the presented examples of the gondola or the golfcart: for some of these images, the weight matrix also aligns with context
features in the background. Note, however, that the model has never been explicitly trained to highlight only the respective
class objects and it is therefore expected to find that context features are also used by the model to increase its output score
for the respective classes.

great grey owl

sulphur-crested cockatoo

yellow lady’s slipper

crossword puzzle

fig

earthstar

armadillo

waffle iron

acorn

peacock

chambered nautilus

abacus

flamingo

centipede

African grey

king penguin

trifle

planetarium

ocarina

jay

oystercatcher

triceratops

parking meter

harp

Fig. A3. First three samples xc
i and linear mappings [W1→L(x

c
i)]c for 24 of the most confidently classified classes c from the Imagenet

dataset. Specifically, the classes are sorted by the sum of the logits for those three samples. Left: Classes 1-12. Right: Classes 13-24.

robin

lifeboat

limpkin

school bus

wing

rock beauty

gondola

macaw

turnstile

three-toed sloth

jackfruit

golf ball

quill

carousel

bottlecap

Polaroid camera

combination lock

parachute

panpipe

paddlewheel

hourglass

jack-o’-lantern

pool table

golfcart

Fig. A4. First three samples xc
i and linear mappings [W1→L(x

c
i)]c for 24 of the most confidently classified classes c from the Imagenet

dataset. Specifically, the classes are sorted by the sum of the logits for those three samples. Left: Classes 25-36. Right: Classes 37-48.

A.2. Additional explanations for intermediate neurons [DenseNet-121]
In Fig. A5, we present additional qualitative examples of the linear mappings [W1→l(xi)]n that explain the activations

of intermediate neurons n in layer l=87. Specifically, we show 16 out of the 20 most highly activating neurons and their
explanations, which were not already shown in the main paper. We find that all neurons seem to represent specific concepts,
such as faces, snouts, water, grass, etc.

La
ye

r8
7

ne
ur

on
47

1
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
47

3
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
48

3
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
59

3
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
60

5
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
64

8
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
69

7
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
72

2
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
72

7
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
99

8
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
91

0
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
93

8
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
96

2
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
97

0
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
10

02
14

hig
he

st
ac

tv
ts.

La
ye

r8
7

ne
ur

on
97

4
14

hig
he

st
ac

tv
ts.

Fig. A5. Additional examples of some of the 20 most highly activating neurons in layer 87 of the B-cos DenseNet-121 model. Similar to
the results shown in the main paper, we observe the neurons to represent highly specific concepts.

A.3. Explanations for other B-cos networks
In Fig. A6, we show explanations for neurons in intermediate layers of a B-cos ResNet-34, a B-cos InceptionNet, and

a B-cos VGG-11. We observe that the complexity of the neurons tends to increase, similarly to the neurons in the B-cos
DenseNet-121 model.

La
ye

r1
9

ne
ur

on
26

15
hig

he
st

ac
tv

ts.

La
ye

r2
7

ne
ur

on
75

15
hig

he
st

ac
tv

ts.

La
ye

r3
6

ne
ur

on
21

2
15

hig
he

st
ac

tv
ts.

(a) B-cos ResNet-34

La
ye

r4
ne

ur
on

17
6

15
hig

he
st

ac
tv

ts.

La
ye

r6
ne

ur
on

60
15

hig
he

st
ac

tv
ts.

La
ye

r8
ne

ur
on

36
7

15
hig

he
st

ac
tv

ts.

(b) B-cos VGG-11

La
ye

r2
6

ne
ur

on
46

15
hig

he
st

ac
tv

ts.

La
ye

r6
0

ne
ur

on
41

2
15

hig
he

st
ac

tv
ts.

La
ye

r9
4

ne
ur

on
82

1
15

hig
he

st
ac

tv
ts.

(c) B-cos InceptionNet

Fig. A6. Explanations for intermediate neurons for other B-cos networks. In particular, we show results for B-cos ResNet-34 (a), B-cos
VGG-11 (b), and B-cos InceptionNet (c); cf. Tab. 2 in the main paper. Similarly to the DenseNet-121 model, we observe the linear map-
pings [W1→l]n to be of high visual quality and increase in complexity throughout the layers for all networks.

B. Additional quantitative evaluations
B.1. Localisation scores.
In Figs. B1 and B2, we present the localisation results of the grid pointing game [S3].

In particular, in Fig. B1, we show that of all methods, the best explanation for the B-cos network is given by the model-
inherent linear transforms W1→L(x) (Eq. 13, main paper).

Moreover, from Fig. B2, we can estimate the interpretability gain due to replacing the linear transform in conventional
models by the B-cos transform: specifically, we see that no method explains the baseline models better than the model-
inherent linear transforms explain the respective B-cos network.

We note that LIME and GCam often achieve good localisation scores. However, we would like to highlight the low
reliability of those explanations (high variance). Further, LIME requires many forward passes through the model to estimate
feature importance, whereas the model-inherent explanations of B-cos models can be extracted in a single forward and
backward pass. GCam, on the other hand, only provides explanations with comparably low resolution (cf. also Fig. A2),
since it only explains the model’s classification head. As such, it does not actually explain the full model, but only a small
fraction of it (e.g., 1 out of 121 layers for DenseNet-121). In contrast, the model-inherent explanations of the B-cos networks
provide high-resolution explanations in color and explain the entire model.

0.0
0.2
0.4
0.6
0.8
1.0

B-Cos DenseNet-121 B-Cos ResNet-34

0.0
0.2
0.4
0.6
0.8
1.0

B-Cos VGG-11 B-Cos InceptionNet

Lo
ca

lis
at

ion
M

et
ric

DeepLIFT IxG Grad IntGrad RISE LIME GCam OursDeepLIFT IxG Grad IntGrad RISE LIME GCam Ours

Oracle attributions Uniform attributions

Fig. B1. Localisation metric results for all attribution methods for the converted B-cos models. Note that the DenseNet-121 and Incep-
tionNet results are the same as in the main paper in Fig. 5.

0.0
0.2
0.4
0.6
0.8
1.0

Pretrained DenseNet-121

B-
co

s

Pretrained ResNet-34

B-
co

s

0.0
0.2
0.4
0.6
0.8
1.0

Pretrained VGG-11

B-
co

s

Pretrained InceptionNet

B-
co

sLo
ca

lis
at

ion
M

et
ric

RISE IxG DeepLIFT Grad IntGrad GCam LIME OursRISE IxG DeepLIFT Grad IntGrad GCam LIME Ours

Oracle attributions Uniform attributions

Fig. B2. Results of the localisation metric for all post-hoc attribution methods for the original, pre-trained models. Additionally, we show
the B-cos results of the converted models as a reference; note that the equivalent to ‘Ours’ in piece-wise linear models is given by ‘IxG’.

B.2. Impact of model size on performance

6.8 8.0 9.4 10.8 12.4 14.0 15.8
Number of parameters (M)

69.00

70.00

71.00

72.00

73.00

74.00

To
p-

1
ac

cu
ra

cy
(%

)

Baseline DenseNet-121
B-cos DenseNet-121 models

Fig. B3. Top-1 accuracy on ImageNet of B-cos DenseNet-121
models of different sizes (i.e., growth factors, see [S4]). These
models were trained with 2 MaxOut units. For reference, we
indicate the number of parameters and the accuracy results of a
conventional DenseNet-121 model (Baseline, dashed lines).

B-cos DenseNet-121 models
MaxOut no Maxout with 2 units
g-factor 32 20 22 24 26 28 30 32

#Params. (M) 7.9 6.8 8.0 9.4 10.8 12.4 14.0 15.8
Accuracy (%) 72.6 72.8 73.2 73.6 73.7 74.0 73.9 74.3

Standard DenseNet-121: accuracy 74.4; parameters 8.0; g-factor 32

Tab. B1. Top-1 accuracies (%) on ImageNet of B-cos DenseNet-
121 models with different growth factors (g-factors), see [S4], and
with and without MaxOut. Note that the B-cos DenseNet-121 model
without MaxOut does not employ any non-linearities other than B-
cos. Results of a standard DenseNet-121 model shown for reference.

In Fig. B3 and Tab. B1, we present the results of two ablation studies. On the one hand, we show the results for a B-cos
DenseNet-121 model trained without MaxOut, which therefore has a similar number of parameters as the baseline model (a
few less due to not using BatchNorm nor biases). On the other hand, we evaluate DenseNet models with two MaxOut units
per neuron of different sizes. For this, we modify the growth factor of the model architectures, see [S4].

In particular, in Tab. B1, we show that despite not employing any non-linearity apart from the B-cos transform, the model
with no MaxOut units also achieves competitive performance (left-most column in Tab. B1). Specifically, we only observe a
minor drop in performance with respect to a conventional DenseNet-121 model (74.4 → 72.6, ∆=1.8).

Further, the accuracy of B-cos networks improves with model size; note that the B-cos DenseNet-121 with a growth
factor of 22 and 2 MaxOut units has a similar size to the pretrained baseline DenseNet-121 model. While there is a drop in
performance (74.4 → 73.2, ∆=1.2), the B-cos version still shows competitive accuracy results. Lastly, note that increasing
model size via maxout is computationally more efficient than just increasing the growth factor in a model with a single unit,
as the number of feature channels remains unchanged.

B.3. Class-discriminative information content in watermark neurons
As discussed in the main paper, we observed that some neurons seem to specifically respond to watermarks in images.
While this might not seem like a semantically meaningful feature, we find that the distribution of watermarks is in fact
highly skewed. In particular, in Fig. B4, we plot the distribution of classes among the images corresponding to the 500
highest neuron activations of the ‘watermark neuron’ (index 341); we manually inspected those images and found that
neuron 341 consistently activated on text within or overlayed over the images. These images clearly exhibit a non-uniform
class distribution, indicating that watermarks indeed represent a highly informative feature for the classification task.

0 100 200 300 400
0

5

10

15

Co
-o

cc
ur

re
nc

e
b/

w
cla

ss
es

an
d

ne
ur

on
34

1

900 920 940 960 980 1000
Classes (sorted by co-occurrence w/ neuron 341)

Fig. B4. Class distribution among the images corresponding to the 500 highest activations of the watermark neuron (341). The co-
occurrence distribution between classes and watermarks is indeed highly skewed and only a fraction of all classes is represented among
these images. This indicates high discriminative power of the watermark for classification.

C. Implementation details
Here, we provide implementation details regarding implementation of a convolutional B-cos transform (Algorithm 1), the
training procedure (C.1) and the post-hoc attribution methods (C.2).

Algorithm 1: Pseudocode for B-cos-Conv2d, cf. Eq. (9) in the main paper.

1 # x: input, Ŵ: normed weights, k: kernel size, df : index of feature dimension
2 def bcos conv2d(x,Ŵ, k, B):
3 linear out = conv2d(x, Ŵ) # =Ŵx
4 norm = sumpool2d(x.pow(2).sum(df), k).sqrt()
5 cos = linear out / norm.unsqueeze(df)
6 scaling = cos.abs().pow(B-1) # =|c(x;Ŵ)|B−1

7 return scaling ∗ linear out # =|c(x;Ŵ)|B−1Ŵx

C.1. Training and evaluation procedure
C.1.1 CIFAR10
Architecture. For our CIFAR10 experiments, we used a 9-layer architecture with the following specifications: kernel size
k = [3, 3, 3, 3, 3, 3, 3, 3, 1], stride s = [1, 1, 2, 1, 1, 2, 1, 1, 1], padding p = [1, 1, 1, 1, 1, 1, 1, 1, 0], and output channels
o = [64, 64, 128, 128, 128, 256, 256, 256, 10] for layers l = [1, 2, 3, 4, 5, 6, 7, 8, 9] respectively.

When increasing the parameter B, we observed the input signal to decay strongly over the network layers, which resulted
in zero outputs and hindered training. To overcome this, we scaled all layer outputs with a fixed scalar γ, which we set such
that log10 γ = 1.5×B − 1.75, which improved signal propagation. To counteract the artificial upscaling of the signal at the
network output, we divided the network output by a fixed constant T for each B, such that log10 T = [−3,−3,−2, 1, 2, 2, 3]
for B= [1, 1.25, 1.5, 1.75, 2, 2.25, 2.5] respectively. In future work, we aim to examine how to automatically set an optimal
scale for a given network in more detail.
Training. We trained our CIFAR10 models for 100 epochs with Adam [S5], an initial learning rate of 1× 10−3, and a batch
size of 64. Further, we used a cosine learning rate schedule and decayed the learning rate to 1×10−5 over the 100 epochs and
applied horizontal flipping and padded random cropping for augmenting the data. We used a bias term of b = log(0.1/0.9),
which yields a uniform probability distribution for zero inputs ([f(x = 0)]i = [σ(W1→L 0+ b)]i = 0.1 ∀ i).

C.1.2 ImageNet

Training. Similar to the CIFAR10 experiments, we observed signals to decay quickly for deep networks and to be dependent
on the number of channels used. To overcome this, we scaled the layer outputs by γ = s/

√
d with s a network-dependent

hyperparameter and d the input dimensionality (i.e., k2c for a convolutional layer with kernel size k and an input with c
feature channels). Specifically, we chose s = 100 for DenseNets and ResNets, s = 200 for the InceptionNet, and s = 1000
for the VGG model.

Moreover, as in the CIFAR10 experiments, we divided the network outputs by a temperature parameter T . In detail, for the
results in this paper we set log10 T = −3 for the DenseNet models, log10 T = 1 for ResNet, log10 T = 0 for InceptionNet,
and log10 T = −1 for the VGG model. These parameters were experimentally determined to achieve good accuracies and
stable training behaviour. In future work, we plan to investigate how to set the temperature parameter automatically.

Finally, we added the auxiliary loss in the InceptionNet with a weighting of λ = 1, used images of size s = 299
for Inception (224 otherwise), and employed RandAugment with n = 2 and m = 9. The bias term b was set to b =
log(0.01/0.99) for all ImageNet experiments.

C.2. Attribution methods
We compare the model-inherent explanations, given by the linear transform W1→L(x), against the following post-hoc attri-
bution methods: the vanilla gradient (Grad, [S2]), ‘Input×Gradient’ (IxG, cf. [S1]), Integrated Gradients (IntGrad, [S10]),
DeepLIFT ([S9]), GradCam (GCam, [S8]), LIME ([S7]), and (RISE [S6]).

For all methods except RISE, LIME, and GCam, we rely on the captum library (github.com/pytorch/captum).
For IntGrad, we set n steps = 50 for integrating over the gradients. For RISE and LIME, we used the official implementations

github.com/pytorch/captum

available at github.com/eclique/RISE and github.com/marotcr/lime respectively. We generated 500 masks
for RISE and set the hyperparameters s and p to their default values of s = 8 and p = 0.1. Similarly, we used 500 samples
for LIME, and used the default values for the kernel size (k = 4) and the number of features (n = 5).

C.2.1 Localisation metric

We evaluated all attribution methods on the grid pointing game [S3]. For this, we constructed 500 3 × 3 grid images. For
an example of a 2 × 2 grid, see Fig. 3 in the main paper. As was done in [S3], we sorted the images according to the
models’ classification confidence for each class and then sampled a random set of classes for each multi-image. For each of
the sampled classes, we then included the most confidently classified image in the grid that had not already been used in a
previous grid image.

D. Additional derivations and discussions
D.1. On the B-cos transform in matrix form

In the following, we provide additional details on how to express the B-cos transform in matrix form.
As shown in Eq. (3) in the main paper, the B-cos transform is given by

B-cos(x;w) = ||ŵ|| ||x|| × |c(x, ŵ)|B × sgn(c(x, ŵ)) , (D.1)
with c(x,w) = cos(∠(x,w)) , (D.2)

ŵ = w/||w|| , (D.3)

∠(x,w) returning the angle between x and w, and sgn the sign function. Note that the sign function can be expressed as
sgn(a) = a/|a| for |a| ≠ 0 and zero otherwise. Hence, Eq. (D.1) can be expressed as

B-cos(x;w) = ||ŵ|| ||x|| × |c(x, ŵ)|B × sgn(c(x, ŵ)) (D.4)

(replace sgn) = ||ŵ|| ||x|| × |c(x, ŵ)|B × c(x, ŵ)/|c(x, ŵ)| (D.5)

(combine cos terms) = ||ŵ|| ||x|| × |c(x, ŵ)|B−1 × c(x, ŵ) (D.6)

(reorder) = ||ŵ|| ||x||×c(x, ŵ)× |c(x, ŵ)|B−1 (D.7)

(write first three factors as linear transform) = ŵTx× |c(x, ŵ)|B−1 . (D.8)

For clarity, we marked the changes between lines in the above equations in red.
From Eq. (D.8) it becomes clear that a B-cos transform simply computes a rescaled linear transform. Thus, multiple units

in parallel (i.e., a layer l∗ of B-cos units) can easily be expressed in matrix form via

l∗(x) = |c(x,Ŵ)|B−1 × Ŵx . (D.9)

Here, the ×, cos, and absolute value operators are applied element-wise and the rows of Ŵ are given by ŵn of the individual
units n.

Hence, the output of each unit (entry in output vector l∗) is the down-scaled linear transform from Eq. (D.8). Note that
Eq. (D.9) is the same as Eq. (9) in the main paper.

D.2. On the relevance of image encoding for the visualisations
As we describe in the main paper, we encode image pixels as [r, g, b, 1−r, 1−g, 1−b]. This has two important advantages.

On the one hand, as argued by [S3], this overcomes a bias towards bright pixels. For this, note that the model output is
computed as a linear transform of the input x. As such, the contribution to the output per pixel is given by the weighted input
strength. In particular, a specific pixel location (i, j) with color channels c contributes

∑
c w(i,j,c)x(i,j,c) to the output. Under

the conventional encoding—i.e., [r, g, b]—, a black pixel is encoded by x(i,j,c)=0 for c ∈ {1, 2, 3} and can therefore not con-
tribute to the model output. Since we train the model to maximise its outputs (binary cross entropy loss, see Sec. 3.2.2 in the
main paper), the network will preferentially encode bright pixels, as these can produce higher contributions for maximising
the output than dark pixels. In contrast, under the new encoding dark and bright pixels have the same amount of ‘signal’ that
can be weighted, i.e.,

∑
c x(i,j,c)=3 ∀ (i, j).

github.com/eclique/RISE
github.com/marotcr/lime

Moreover, this encoding allows to unambiguously infer the color of a pixel solely based on the angle of the pixel vec-
tor [r, g, b, 1−r, 1−g, 1−b]. To contrast this with the original encoding, consider a pixel that is (almost) completely black
and given by [r, g, b] with g=0, b=0, r=0.001. This pixel has the same angle as a red pixel, given by r=1, g=0, b=0.
Thus, these two colors cannot be disambiguated based on their angle. By adding the three additional color channels
[1−r, 1−g, 1−b], each color channel is uniquely encoded by the direction of the color channel vector, e.g.,[r, 1−r]. Finally,
note that the B-cos transform induces an alignment pressure on the weights, i.e., the model weights are optimised such that
W1→L points in the same direction as (important features in) the input. Consequently, the weights will reproduce the angles
of the pixels, but there is no constraint on their norm. Since the angle is sufficient for inferring the color, we can nevertheless
decode the angles of the weight vectors into RGB colors, as, e.g., shown in Figs. A2, A3, A4, A5 and A6.

References
[S1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, and Been Kim. Sanity Checks for

Saliency Maps. In Advances in Neural Information Processing Systems (NeurIPS), 2018. 10
[S2] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-Robert Müller.

How to explain individual classification decisions. The Journal of Machine Learning Research (JMLR), 2010. 10
[S3] Moritz Böhle, Mario Fritz, and Bernt Schiele. Convolutional Dynamic Alignment Networks for Interpretable Clas-

sifications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. 8,
11

[S4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 9

[S5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International Conference on
Learning Representations (ICLR), 2015. 10

[S6] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling for Explanation of Black-box Models.
In British Machine Vision Conference (BMVC), 2018. 2, 10

[S7] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”: Explaining the Predictions of
Any Classifier. In International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2016. 2, 10

[S8] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In International Conference
on Computer Vision (ICCV), 2017. 2, 10

[S9] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features Through Propagating Acti-
vation Differences. In International Conference on Machine Learning (ICML), 2017. 2, 10

[S10] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. In Doina Precup and
Yee Whye Teh, editors, International Conference on Machine Learning (ICML), 2017. 2, 10

