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In this supplement to our work on B-cos DNNs, we provide:

(A) Additional qualitative results . ............ .. . e

In this section, we show additional qualitative results of the model-inherent explanations. This includes
visualisations for the same model explored in the main paper (DenseNet-121)—both for the class-logits
and for intermediate neurons—as well as results for other B-cos networks.

Moreover, we provide additional comparisons to post-hoc importance attribution methods that were not
shown in the main paper.

(B) Additional quantitative results ............... ... . e

In this section, we show additional quantitative results. In particular, we present the localisation metric
results for two additional B-cos networks as well as those of the pre-trained conventional DNNs.

Moreover, we present ImageNet results for B-cos networks trained without any additional non-linearities
(apart from the B-cos transform) and for different model sizes.

Finally, we investigate the predictive power of the watermark neurons in more detail.

(C) Implementation details . ............. .. .. i e

In this section, we describe the model architectures, the training procedure, and the evaluation of model
interpretability in more detail.

(D) Additional derivations and diSCUSSIONS .. ... ... ... ... . .

In this section, we provide a short derivation for Eq. (3)—Eq. (9). Further, we provide a more detailed
explanation of the relevance of the image encoding for visualising the linear transforms W1 _,;(x).
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Fig. A1l. Illustration of the computations of a B-cos network. For a given input image (left), the model computes an input-dependent lin-
ear transform W1,z (x) (center). The scalar product between the input and the weights [W1_, 1 (x)]. for class ¢ (row ¢ of W1_, (%)),
yields the class logits for the respective class. To obtain class probabilities (right), we apply the sigmoid function. Since the B-cos net-
works are trained with the BCE loss, they produce probabilities per class and not a probability distribution over classes. Thus, the proba-
bilities do not sum to 1. For illustration purposes, we only visualise the positive contributions according to W1_.1,(x).

A. Additional qualitative examples

In Fig. Al, we illustrate how the linear mappings W1_,1,(x) are used to compute the outputs of B-cos networks. In
particular, with this we would like to highlight that these linear mappings do not only constitute qualitatively convincing
visualisations. Instead, they in fact constitute the actual linear transformation matrix that the model effectively applies to the
input to compute its outputs and thus constitute an accurate summary of the model computations.

A.1. Additional explanations for class logits [DenseNet-121]

Comparisons between explanation methods In Fig. A2, we show additional comparisons between the model-inherent
explanations based on the linear mapping [W1_, 1, (x;)]. and some post-hoc methods; in particular, we show results for Grad-
Cam (GCam) [S8], LIME [S7], Integrated Gradients (IntG) [S10], DeepLIFT [S9], and RISE [S6] on the most confidently
classified image of the first 15 classes in Fig. A3. While GCam highlights similar regions and LIME also yields explanations
in color, these explanations are post-hoc approximations of model behaviour. In contrast, the model-inherent explanations are
not only of higher visual quality, but also summarise the model computations for the presented classes accurately, cf. Fig. Al.
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Fig. A2. Comparison between the model-inherent explanations (‘Ours’) and various post-hoc explanation methods, evaluated for the most
confident image for the first 15 of the classes shown in Figs. A3 and A4. Note that for RISE we use its default colormap.



Model-inherent explanations. In Figs. A3 and A4, we present additional qualitative examples of the linear mappings
[W11(x;i)]. that explain the class logit ¢ in the B-cos DenseNet-121 model, see Eq. (13) in the main paper. Specifically,
we show the 3 most confidently classified examples for 48 different classes; these classes were selected as those that had the
highest mean confidence (sum of class logits) in the three most confidently classified images.

Note that due to the alignment pressure induced by the B-cos transform, the linear mappings [W1_, 1, (x;)]. align with
class-discriminative features in the input images. Interestingly, we find that these features can be highly specific to particular
regions in the image (see, e.g., great grey owl, centipede, school bus, planetarium, three-toed sloth, parking meter), but can
also cover the entire image and include background features that correlate with the presented classes. For the latter, see e.g.,
the presented examples of the gondola or the golfcart: for some of these images, the weight matrix also aligns with context
features in the background. Note, however, that the model has never been explicitly trained to highlight only the respective
class objects and it is therefore expected to find that context features are also used by the model to increase its output score
for the respective classes.
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Fig. A3. First three samples x§ and linear mappings [W1_ . (x5)]. for 24 of the most confidently classified classes ¢ from the Imagenet
dataset. Specifically, the classes are sorted by the sum of the logits for those three samples. Left: Classes 1-12. Right: Classes 13-24.
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Fig. A4.First three samples x§ and linear mappings [W1_, 1, (x§)]. for 24 of the most confidently classified classes ¢ from the Imagenet
dataset. Specifically, the classes are sorted by the sum of the logits for those three samples. Left: Classes 25-36. Right: Classes 37-48.




A.2. Additional explanations for intermediate neurons [DenseNet-121]

In Fig. A5, we present additional qualitative examples of the linear mappings [W1_,;(x;)], that explain the activations
of intermediate neurons n in layer [=87. Specifically, we show 16 out of the 20 most highly activating neurons and their

explanations, which were not already shown in the main paper. We find that all neurons seem to represent specific concepts,

such as faces

etc.
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Fig. AS. Additional examples of some of the 20 most highly activating neurons in layer 87 of the B-cos DenseNet-121 model. Similar to

the results shown in the main paper, we observe the neurons to represent highly specific concepts.



A.3. Explanations for other B-cos networks

In Fig. A6, we show explanations for neurons in intermediate layers of a B-cos ResNet-34, a B-cos InceptionNet, and

a B-cos VGG-11. We observe that the complexity of the neurons tends to increase, similarly to the neurons in the B-cos
DenseNet-121 model.
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Fig. A6. Explanations for intermediate neurons for other B-cos networks. In particular, we show results for B-cos ResNet-34 (a), B-cos
VGG-11 (b), and B-cos InceptionNet (c); cf. Tab. 2 in the main paper. Similarly to the DenseNet-121 model, we observe the linear map-
pings [W1_,]» to be of high visual quality and increase in complexity throughout the layers for all networks.



B. Additional quantitative evaluations
B.1. Localisation scores.

In Figs. B1 and B2, we present the localisation results of the grid pointing game [S3].

In particular, in Fig. B1, we show that of all methods, the best explanation for the B-cos network is given by the model-
inherent linear transforms W_, ;,(x) (Eq. 13, main paper).

Moreover, from Fig. B2, we can estimate the interpretability gain due to replacing the linear transform in conventional
models by the B-cos transform: specifically, we see that no method explains the baseline models better than the model-
inherent linear transforms explain the respective B-cos network.

We note that LIME and GCam often achieve good localisation scores. However, we would like to highlight the low
reliability of those explanations (high variance). Further, LIME requires many forward passes through the model to estimate
feature importance, whereas the model-inherent explanations of B-cos models can be extracted in a single forward and
backward pass. GCam, on the other hand, only provides explanations with comparably low resolution (cf. also Fig. A2),
since it only explains the model’s classification head. As such, it does not actually explain the full model, but only a small
fraction of it (e.g., 1 out of 121 layers for DenseNet-121). In contrast, the model-inherent explanations of the B-cos networks
provide high-resolution explanations in color and explain the entire model.
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Fig. B1. Localisation metric results for all attribution methods for the converted B-cos models. Note that the DenseNet-121 and Incep-
tionNet results are the same as in the main paper in Fig. 5.
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Fig. B2. Results of the localisation metric for all post-hoc attribution methods for the original, pre-trained models. Additionally, we show
the B-cos results of the converted models as a reference; note that the equivalent to ‘Ours’ in piece-wise linear models is given by ‘IxG’.



B.2. Impact of model size on performance
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Fig. B3. Top-1 accuracy on ImageNet of B-cos DenseNet-121 Tab. B1. Top-1 accuracies (%) on ImageNet of B-cos DenseNet-
models of different sizes (i.e., growth factors, see [S4]). These 121 models with different growth factors (g-factors), see [S4], and
models were trained with 2 MaxOut units. For reference, we with and without MaxOut. Note that the B-cos DenseNet-121 model
indicate the number of parameters and the accuracy results of a without MaxOut does not employ any non-linearities other than B-
conventional DenseNet-121 model (Baseline, dashed lines). cos. Results of a standard DenseNet-121 model shown for reference.

In Fig. B3 and Tab. B1, we present the results of two ablation studies. On the one hand, we show the results for a B-cos
DenseNet-121 model trained without MaxOut, which therefore has a similar number of parameters as the baseline model (a
few less due to not using BatchNorm nor biases). On the other hand, we evaluate DenseNet models with two MaxOut units
per neuron of different sizes. For this, we modify the growth factor of the model architectures, see [S4].

In particular, in Tab. B1, we show that despite not employing any non-linearity apart from the B-cos transform, the model
with no MaxOut units also achieves competitive performance (left-most column in Tab. B1). Specifically, we only observe a
minor drop in performance with respect to a conventional DenseNet-121 model (74.4 — 72.6, A=1.8).

Further, the accuracy of B-cos networks improves with model size; note that the B-cos DenseNet-121 with a growth
factor of 22 and 2 MaxOut units has a similar size to the pretrained baseline DenseNet-121 model. While there is a drop in
performance (74.4 — 73.2, A=1.2), the B-cos version still shows competitive accuracy results. Lastly, note that increasing
model size via maxout is computationally more efficient than just increasing the growth factor in a model with a single unit,
as the number of feature channels remains unchanged.

B.3. Class-discriminative information content in watermark neurons

As discussed in the main paper, we observed that some neurons seem to specifically respond to watermarks in images.
While this might not seem like a semantically meaningful feature, we find that the distribution of watermarks is in fact
highly skewed. In particular, in Fig. B4, we plot the distribution of classes among the images corresponding to the 500
highest neuron activations of the ‘watermark neuron’ (index 341); we manually inspected those images and found that
neuron 341 consistently activated on text within or overlayed over the images. These images clearly exhibit a non-uniform
class distribution, indicating that watermarks indeed represent a highly informative feature for the classification task.
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Fig. B4. Class distribution among the images corresponding to the 500 highest activations of the watermark neuron (341). The co-
occurrence distribution between classes and watermarks is indeed highly skewed and only a fraction of all classes is represented among
these images. This indicates high discriminative power of the watermark for classification.



C. Implementation details

Here, we provide implementation details regarding implementation of a convolutional B-cos transform (Algorithm 1), the
training procedure (C.1) and the post-hoc attribution methods (C.2).

Algorithm 1: Pseudocode for B-cos-Conv2d, cf. Eq. (9) in the main paper.

1 #x: input, W normed weights, k: kernel size, d¢: index of feature dimension
2 def bcos_conv2d (X,\/7\V, k, B):

3 linear_out = conv2d(x, W) #=Wx

4 norm = sumpool2d(x.pow(2).sum(d ), k).sqrt()

5 cos = linear_out / norm.unsqueeze(d s )

6 scaling = cos.abs().pow(B-1) # = |c(x; \Xf‘) |B-1
7

return scaling « linear_out # = |c(x: W)[#~ 1 Wx

C.1. Training and evaluation procedure
C.1.1 CIFAR10

Architecture. For our CIFAR10 experiments, we used a 9-layer architecture with the following specifications: kernel size
k= 1[3,3,3,3,3,3,3,3,1], stride s = [1,1,2,1,1,2,1,1,1], padding p = [1,1,1,1,1,1,1,1,0], and output channels
o = [64, 64,128,128, 128, 256, 256, 256, 10] for layers I = [1, 2, 3,4, 5,6, 7, 8, 9] respectively.

When increasing the parameter B, we observed the input signal to decay strongly over the network layers, which resulted

in zero outputs and hindered training. To overcome this, we scaled all layer outputs with a fixed scalar -, which we set such
that log;,v = 1.5 x B — 1.75, which improved signal propagation. To counteract the artificial upscaling of the signal at the
network output, we divided the network output by a fixed constant T for each B, such that log,, T' = [-3, —3, 2,1, 2,2, 3]
for B=[1,1.25,1.5,1.75,2,2.25, 2.5] respectively. In future work, we aim to examine how to automatically set an optimal
scale for a given network in more detail.
Training. We trained our CIFAR10 models for 100 epochs with Adam [S5], an initial learning rate of 1 x 1073, and a batch
size of 64. Further, we used a cosine learning rate schedule and decayed the learning rate to 1 x 10~ over the 100 epochs and
applied horizontal flipping and padded random cropping for augmenting the data. We used a bias term of b = log(0.1/0.9),
which yields a uniform probability distribution for zero inputs ([f(x = 0)]; = [0(W1.. 0+ b)]; = 0.1 ¥ i).

C.1.2 TImageNet

Training. Similar to the CIFAR10 experiments, we observed signals to decay quickly for deep networks and to be dependent
on the number of channels used. To overcome this, we scaled the layer outputs by v = s/v/d with s a network-dependent
hyperparameter and d the input dimensionality (i.e., k?c for a convolutional layer with kernel size k£ and an input with c
feature channels). Specifically, we chose s = 100 for DenseNets and ResNets, s = 200 for the InceptionNet, and s = 1000
for the VGG model.

Moreover, as in the CIFAR10 experiments, we divided the network outputs by a temperature parameter 7'. In detail, for the
results in this paper we set log,, 1" = —3 for the DenseNet models, log,, T' = 1 for ResNet, log,, 7' = 0 for InceptionNet,
and log,, 1" = —1 for the VGG model. These parameters were experimentally determined to achieve good accuracies and
stable training behaviour. In future work, we plan to investigate how to set the temperature parameter automatically.

Finally, we added the auxiliary loss in the InceptionNet with a weighting of A = 1, used images of size s = 299
for Inception (224 otherwise), and employed RandAugment with n = 2 and m = 9. The bias term b was set to b =
log(0.01,/0.99) for all ImageNet experiments.

C.2. Attribution methods

We compare the model-inherent explanations, given by the linear transform W _, 1, (x), against the following post-hoc attri-
bution methods: the vanilla gradient (Grad, [S2]), ‘InputxGradient’ (IxG, cf. [S1]), Integrated Gradients (IntGrad, [S10]),
DeepLIFT ( [S9]), GradCam (GCam, [S8]), LIME ( [S7]), and (RISE [S6]).

For all methods except RISE, LIME, and GCam, we rely on the captum library (github.com/pytorch/captum).
For IntGrad, we set n_steps = 50 for integrating over the gradients. For RISE and LIME, we used the official implementations


github.com/pytorch/captum

available at github.com/eclique/RISE and github.com/marotcr/1ime respectively. We generated 500 masks
for RISE and set the hyperparameters s and p to their default values of s = 8 and p = 0.1. Similarly, we used 500 samples
for LIME, and used the default values for the kernel size (k = 4) and the number of features (n = 5).

C.2.1 Localisation metric

We evaluated all attribution methods on the grid pointing game [S3]. For this, we constructed 500 3 x 3 grid images. For
an example of a 2 x 2 grid, see Fig. 3 in the main paper. As was done in [S3], we sorted the images according to the
models’ classification confidence for each class and then sampled a random set of classes for each multi-image. For each of
the sampled classes, we then included the most confidently classified image in the grid that had not already been used in a
previous grid image.

D. Additional derivations and discussions

D.1. On the B-cos transform in matrix form

In the following, we provide additional details on how to express the B-cos transform in matrix form.
As shown in Eq. (3) in the main paper, the B-cos transform is given by

B-cos(x; w) = [|W]] [[x]| x |e(x, W)[” x sgn(c(x, %)) , (D.1)
with c(x,w) = cos(L(x,w)) , (D.2)
w=w/|[w], (D.3)

Z(x,w) returning the angle between x and w, and sgn the sign function. Note that the sign function can be expressed as
sgn(a) = a/|a| for |a| # 0 and zero otherwise. Hence, Eq. (D.1) can be expressed as

B-cos(x; w) = [[W|| [|x|| x |e(x, W)[* x sgn(c(x, W)) (D.4)

s =191 ] % e )P o )/ e ) D.5)

(combine cos terms) = [|W|| ||x]| x |e(x,w)[P~ x ¢(x, W) (D.6)

(reorder) = |11 [1x]]xe(x, #) x |e(x, )P~ D.7)

(write first three factors as linear transform) =wlix x |e(x,w)[Bt. (D.8)

For clarity, we marked the changes between lines in the above equations in red.

From Eq. (D.8) it becomes clear that a B-cos transform simply computes a rescaled linear transform. Thus, multiple units
in parallel (i.e., a layer 1* of B-cos units) can easily be expressed in matrix form via

1*(x) = |e(x, W)P~! x Wx. (D.9)

Here, the X, cos, and absolute value operators are applied element-wise and the rows of W are given by w,, of the individual
units n.

Hence, the output of each unit (entry in output vector 1*) is the down-scaled linear transform from Eq. (D.8). Note that
Eq. (D.9) is the same as Eq. (9) in the main paper.

D.2. On the relevance of image encoding for the visualisations

As we describe in the main paper, we encode image pixels as [r, g,b, 1 —r,1—g, 1 —b]. This has two important advantages.

On the one hand, as argued by [S3], this overcomes a bias towards bright pixels. For this, note that the model output is
computed as a linear transform of the input x. As such, the contribution to the output per pixel is given by the weighted input
strength. In particular, a specific pixel location (4, j) with color channels c contributes W(3,5,¢)T(i,j,¢) to the output. Under
the conventional encoding—i.e., [r, g, b]—, a black pixel is encoded by z(; ; .y =0 for ¢ € {1,2, 3} and can therefore not con-
tribute to the model output. Since we train the model to maximise its outputs (binary cross entropy loss, see Sec. 3.2.2 in the
main paper), the network will preferentially encode bright pixels, as these can produce higher contributions for maximising
the output than dark pixels. In contrast, under the new encoding dark and bright pixels have the same amount of ‘signal’ that
can be weighted, i.e., > 2 j.c)=3V (i, ).
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Moreover, this encoding allows to unambiguously infer the color of a pixel solely based on the angle of the pixel vec-
tor [r,g,b,1—r,1—g,1—0b]. To contrast this with the original encoding, consider a pixel that is (almost) completely black
and given by [r, g,b] with g=0,b=0,7=0.001. This pixel has the same angle as a red pixel, given by r=1,¢g=0,b=0.
Thus, these two colors cannot be disambiguated based on their angle. By adding the three additional color channels
[l—r,1—g,1—b], each color channel is uniquely encoded by the direction of the color channel vector, e.g.,[r, 1 —r]. Finally,
note that the B-cos transform induces an alignment pressure on the weights, i.e., the model weights are optimised such that
W _, 1, points in the same direction as (important features in) the input. Consequently, the weights will reproduce the angles
of the pixels, but there is no constraint on their norm. Since the angle is sufficient for inferring the color, we can nevertheless
decode the angles of the weight vectors into RGB colors, as, e.g., shown in Figs. A2, A3, A4, A5 and A6.
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