
Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from
3D MRI Scans with Geometric Deep Neural Networks — Supplementary

Material

Fabian Bongratz1†∗, Anne-Marie Rickmann1,2∗, Sebastian Pölsterl2, Christian Wachinger1,2
1Technical University of Munich, 2Ludwig-Maximilians-University Munich

a

b

u

v

Figure 1. Ground-truth points a and b with curvature κ(a) < κ(b)
and predicted points u and v.

A. Proof for Cuvature-Weighted Chamfer

We want to give a brief mathematical intuition why our
curvature-weighted Chamfer loss emphasizes geometric ac-
curacy in high-curvature regions compared to low-curvature
regions. Imagine therefore two ground-truth points a and
b with respective curvature κ(a) < κ(b) and closest pre-
dicted points u and v as shown in Figure 1. Furthermore,
let the distance from the prediction to the ground truth
be equal in both cases, such that ∥u − a∥ = ∥v − b∥.
For the sake of simplicity, we treat the predicted values u
and v as the parameters that are optimized by gradient de-
scent, i.e., u′ = u − λ∂LC(a,u)

∂u with learning rate λ > 0.
Based on Equation (7) in the main paper, the gradient of the
curvature-weighted Chamfer loss with respect to u calcu-
lates as

∂LC(a, u)

∂u
=

∂

∂u

[
κ(a)

(
∥a− u∥2 + ∥u− a∥2

)]
= 4κ(a)(u− a).

(1)

The calculation of ∂LC(b,v)
∂v = 4κ(b)(v − b) works analo-

gously. The parameter updates are given by

u′ = u− ∂LC(a, u)

∂u
= u+ 4λκ(a)(a− u),

v′ = v − ∂LC(b, v)

∂v
= v + 4λκ(b)(b− v).

(2)

Further, we have ∥a− u∥ = ∥b− v∥ and κ(a) < κ(b), and
thus we get ∥v′− b∥ < ∥u′−a∥ if we assume that we don’t
“shoot over” the goal, i.e., 0 < 4λκ(a) < 4λκ(b) < 1. That
is, point v is pushed more towards b compared to u towards
a within one backward pass. ■

B. Definitions of Loss Functions

Binary cross entropy The cross-entropy loss between a
predicted binary segmentation Bp

l ∈ [0, 1]HWD and a label
Bgt ∈ {0, 1}HWD, where voxels are enumerated from 1 to
N = HWD, is defined as

LBCE(B
p
l , B

gt) = − 1

N

N∑
i=1

[
Bgt(i) logBp

l (i)

+ (1−Bgt(i))(1− logBp
l (i))

]
,

(3)

where B(i) is the value of voxel i.

Inter-mesh normal consistency loss While the Cham-
fer distance takes into account the spatial position of two
meshes, i.e., enforcing surface points to lie “at the right
location”, the cosine distance considers the orientation of
meshes. In general, one can compute the cosine distance
within one mesh, which we refer to as intra-mesh normal
consistency, and between two meshes, which we call inter-
mesh normal consistency.

The inter-mesh normal consistency loss is defined based
on the normal vectors of adjacent points in the predicted
and the ground-truth mesh. Let Pp

s,c,Pgt
c be predicted and

ground-truth point sets with associated normals Ns,c
p =



{n(p)|p ∈ Pp
s,c} and Nc

gt = {n(p)|p ∈ Pgt
c }, respec-

tively. Then, the inter-mesh normal consistency loss is
given by

Ln, inter(Mp
s,c,Mgt

c ) =
1

|Pgt
c |

∑
u∈Pgt

c

1− cos(n(u),n(ṽ))

+
1

|Pp
s,c|

∑
v∈Pp

c

1− cos(n(v),n(ũ)),

(4)

where ṽ = argmin
r∈Pp

s,c

∥u − r∥2 and ũ = argmin
r∈Pgt

c

∥v − r∥2.

In other words, each normal vector at a certain point p is
compared to the normal belonging to the nearest neighbor of
p in the respective other point set. Since nearest-neighbor
correspondences are also required for the computation of
the Chamfer loss, we use the same point sets Pp, Pgt for the
computation of the Chamfer and inter-mesh normal consis-
tency loss in practice (see paragraph “Curvature-weighted
Chamfer loss” in the main paper for details about the point
sets).

Intra-mesh normal consistency loss Instead of comput-
ing the cosine distances among the normals of two different
meshes as described above, it is also possible to compare
normal vectors of two adjacent faces of the same mesh. Two
faces f1 and f2 are adjacent if they share a common edge
e = f1∩f2. This intra-mesh normal-consistency, which we
denote as Ln, intra, intuitively measures the smoothness of
a mesh as it is lowest for meshes with no curvature. For-
mally, it is defined as

Ln, intra(Mp
s,c) =

∑
e=f1∩f2 ̸=∅
f1,f2∈Fp

s,c

1− cos(n(f1),n(f2)), (5)

where n(f) assigns a normal to each face of the mesh. As
this loss is only computed based on a predicted mesh not
taking into account any ground truth, it belongs to the group
of mesh-regularization losses.

Laplacian loss Another measure for the smoothness of a
mesh is computed based on the uniform Laplacian operator
L = D−1A−I, where D is the degree and A is the adjacency
matrix of the mesh. More precisely, Laplacian smoothing
is defined as

LLap, rel(Mp
s,c) =

1

|Vp
s,c|

|Vp
s,c|∑

i=1

∥(Lp
s,c.∆

p
s,c)i∥ (6)

This is a well-known objective for smooth meshes [6].
While many works [7, 8, 4] smooth the mesh with respect
to vertex coordinates Vp

s,c, we got inspired by [9] and apply

the Laplacian operator to the displacement field ∆p
s,c. Our

ablation study confirms that this is a good choice. More
precisely, ∆p

s,c represents the displacement vectors moving
the vertices Vp

s−1,c to Vp
s,c, i.e., Vp

s,c = Vp
s−1,c + ∆p

s,c

transforms the mesh Mp
s−1,c into Mp

s,c.
Even though a Laplacian loss does not guarantee that the

predicted meshes are free of self-intersections, it generally
enforces the predicted meshes to have a smooth surface, i.e.,
few self-intersections. Also note that in Eq. (6) Lp

s,c is con-
sidered to be a constant, i.e., the loss is not backpropagated
through the creation of Lp

s,c.

Edge loss Yet another mesh loss function with regulariz-
ing purposes is given by the edge loss. The edge loss with
respect to a predicted mesh is defined as

Ledge(Mp
s,c) =

1

|Ep
s,c|

∑
(i,j)∈Ep

s,c

∥vi − vj∥2. (7)

Intuitively, this loss function enforces meshes with homoge-
neous edge-lengths, leading to a homogeneous distribution
of vertices on the surface. In general, this is desirable in the
context of cortical surfaces since the folds of the cortex are
also distributed homogeneously.

Mesh-loss weights We condition the mesh-loss weights
on the surface class, even though this increases the number
of hyperparameters, as we have found that different weights
are necessary for white matter and pial surfaces in order
to achieve optimal reconstruction quality. In practice, we
tuned the mesh-loss weights for white matter and pial sur-
faces independently of each other (ignoring the respective
other surfaces in those runs and considering only one hemi-
sphere) on the small MALC dataset [5]. It contains 15 train-
ing scans, 7 validation scans, and 8 test scans (which we ig-
nore since testing our model on such a few scans is probably
not meaningful). From the tuning, we got the following loss
weights:

Surface λ1,c λ2,c λ3,c λ4,c λ5,c

c = wm 1.0 0.01 0.1 0.001 5.0
c = pial 1.0 0.0125 0.25 0.00225 5.0

Mesh-loss function weights for inter-mesh normal con-
sistency Ln, inter, intra-mesh normal consistency Ln, intra,
and Laplacian smoothing LLap were first tuned with a grid
search containing 0.1, 0.01, 0.001 and then fine-tuned with
the values x + 0.5x, x, x − 0.5x, where x was the respec-
tive best value of the first tuning. Weights for Chamfer and
edge losses were set to 1 in this procedure and the edge-loss
weight was later tuned separately trying the values 1, 5, and
10.



Figure 2. Group comparison of cortical atrophy in the right hemi-
sphere between patients diagnosed with Alzheimer’s disease and
healthy controls on the ADNIlarge test-split.

C. Implementation Details
We implemented our method based on pytorch

v1.7.1 https : / / pytorch . org/ and pytorch3d
v0.4.0 https://pytorch3d.readthedocs.io.
We ran experiments on NVIDIA Quadro and Titan
RTX GPUs with 24GB memory each (one GPU per
training). In addition, we used CUDA v10.2.89,
CUDNN v7.6.5, python v3.8.8, and the repositories from
DeepCSR [1] https://bitbucket.csiro.au/
projects / CRCPMAX / repos / deepcsr / browse
and Voxel2Mesh [8] https://github.com/cvlab-
epfl/voxel2mesh/blob/master/README.md.

D. Hyperparameters
A list of hyperparameters is in Table 1. We trained

our models for 100 epochs (OASIS and ADNIsmall) and 40
epochs (ADNIlarge) and chose the best model with respect
to the respective validation set in terms of voxel IoU and
Hausdorff distance.

E. Additional Analysis of Experiments
Cortical atrophy We show the study of cortical atrophy
(Figure 5 in the main paper, left hemisphere) for the right
hemisphere in Figure 2.

Visual analysis of Freesurfer fails In our ADNIlarge
dataset, we removed samples in which FreeSurfer failed.
As it is quite difficult to perform automated quality control
of the FreeSurfer surface pipeline, we removed all scans
that failed in the segmentation of one or more regions as
identified by UCSF quality control guidelines [2]. We then
applied the trained model to the previously removed cases
where FreeSurfer failed and visualize results in Figure 3,
where we focus on pial surfaces due to better visibility. The
first case is a mild case where FreeSurfer was able to gener-
ate 4 surfaces, but we can observe that the left pial surface
extends into the dura. Our model does not produce those

artifacts. We further display a more extreme case, where
FreeSurfer was not able to generate surfaces for the right
hemisphere and also failed to segment parts of the left tem-
poral lobe correctly.

Cortical thickness on OASIS We visualize thickness
measurements on an exemplary subject from the OASIS
dataset in Figure 5. It can be well observed that measure-
ments on Vox2Cortex meshes largely coincide with mea-
surements on FreeSurfer pseudo-ground-truth meshes.

References
[1] Rodrigo Santa Cruz, Léo Lebrat, P. Bourgeat, C. Fookes, J.

Fripp, and O. Salvado. Deepcsr: A 3d deep learning approach
for cortical surface reconstruction. 2021 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
806–815, 2021. 3

[2] Miriam Hartig, Diana Truran-Sacrey, Sky Raptentsetsang,
Alix Simonson, Adam Mezher, Norbert Schuff, and Michael
Weiner. Ucsf freesurfer methods. Technical report,
Alzheimer’s Disease Neuroimaging Initiative, 2014. 3

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 4

[4] Fanwei Kong, Nathan Wilson, and Shawn C. Shadden. A
deep-learning approach for direct whole-heart mesh recon-
struction, 2021. 2

[5] B. Landman and S. Warfield. Miccai 2012 workshop on multi-
atlas labeling. In MICCAI Grand Challenge and Workshop
on Multi-Atlas Labeling, CreateSpace Independent Publish-
ing Platform, Nice, France, 2012. 2

[6] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Y. T. Lee,
Siti Mariyam Hj. Shamsuddin, Diego Gutierrez, and
Norhaida Mohd. Suaib, editors, Proceedings of the 4th Inter-
national Conference on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia 2006, Kuala
Lumpur, Malaysia, November 29 - December 2, 2006, pages
381–389. ACM, 2006. 2

[7] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, Septem-
ber 8-14, 2018, Proceedings, Part XI, volume 11215 of Lec-
ture Notes in Computer Science, pages 55–71. Springer, 2018.
2

[8] Udaranga Wickramasinghe, Edoardo Remelli, Graham Knott,
and Pascal Fua. Voxel2mesh: 3d mesh model generation from
volumetric data. In Anne L. Martel, Purang Abolmaesumi,
Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin
Zhou, Daniel Racoceanu, and Leo Joskowicz, editors, Medi-
cal Image Computing and Computer Assisted Intervention –
MICCAI 2020, pages 299–308, Cham, 2020. Springer Inter-
national Publishing. 2, 3

https://pytorch.org/
https://pytorch3d.readthedocs.io
https://bitbucket.csiro.au/projects/CRCPMAX/repos/deepcsr/browse
https://bitbucket.csiro.au/projects/CRCPMAX/repos/deepcsr/browse
https://github.com/cvlab-epfl/voxel2mesh/blob/master/README.md
https://github.com/cvlab-epfl/voxel2mesh/blob/master/README.md


Optimizer
CNN learn-

ing rate
GNN learn-

ing rate Batch size
Mixed

precision
CNN

channels
GNN

channels
Gradient
clipping

Adam [3]
β1 = 0.9,
β2 = 0.999

1e−4 5e−5 2
(1 for OASIS) yes

16, 32, 64,
128 , 256, 64,

32, 16, 8

255, 64,
64, 64, 64 2e5

Table 1. Hyperparameters used in our experiments.

Pial Surfaces WM Surfaces

Method CC genus # faces # vertices CC genus # faces # vertices

Ours 1 0 336112 168058 1 0 336112 168058
DeepCSR 48.6 152.4 1341838.3 670711.5 18.3 15.8 1209313.5 604661.7
DeepCSR + top. corr. 1 0 1291385.5 645694.8 1 0 1160980.8 580492.4

Table 2. Comparison of topological measures (number of connected components (CC) and genus) and quantification of mesh complexity
in number of faces and vertices. We compare predictions of our method to DeepCSR with and without topology correction on the OASIS
test-set. For our method, the number of faces and vertices is defined by the initial template and does not change. Presented values represent
the average over white and pial surfaces.

[9] Fenqiang Zhao, Zhengwang Wu, Li Wang, Weili Lin, Shun-
ren Xia, Dinggang Shen, and Gang Li. Unsupervised learning
for spherical surface registration. In Mingxia Liu, Pingkun
Yan, Chunfeng Lian, and Xiaohuan Cao, editors, Machine
Learning in Medical Imaging, pages 373–383, Cham, 2020.
Springer International Publishing. 2



Figure 3. MRI scans with overlaying pial surfaces generated by FreeSurfer (pink) and Vox2Cortex (green). From top to bottom we show
sagittal, coronal, and axial slices of two subjects with zoomed in parts where FreeSurfer failed.

Figure 4. Visualization of incorrect anatomy due to topology correction. We show pial surfaces from 2 different patients from the OASIS
dataset. Left: prediction by DeepCSR before topology correction, middle: after topology correction, right: FreeSurfer pseudo ground truth.



a)

b)

c)

Cortical thickness (mm)

White matter Pial

Figure 5. OASIS meshes color-coded with cortical thickness per vertex in mm. a) Vox2Cortex meshes, b) FreeSurfer meshes, c) cortical
thickness between white matter (green) and pial (red) surface.


	. Proof for Cuvature-Weighted Chamfer
	. Definitions of Loss Functions
	. Implementation Details
	. Hyperparameters
	. Additional Analysis of Experiments

