
Appendices
A. Introduction

As part of the supplementary materials for this paper, we present our hyper-parameters and show more visual and quanti-
tative results as an extension to the ones shown in the paper. The supplementary materials contain:

• Further experiments and ablation studies for alternative feature processing schemes on Cityscapes.

• Additional qualitative results on ADE20K comparing the predictions produced by the PISR models to those predicted
by the baseline network.

• Visualization of the t-SNE projections of semantic and instance encodings on Cityscapes, produced by PISR.

• Implementation details and training hyper-parameters for our networks based on Panoptic Deeplab [11], Panoptic
FPN [21] and MaskFormer [12], which are mentioned in the main paper.

• Detailed explanation for generating the semantic heatmaps visualized in Figure 4 and Figure 5 of the main paper.

• Visualization of the intermediate instance heatmaps which are used to generate instance encodings as described in
Section 3.2 of the main paper.

B. Additional Experiments
In this section, we provide additional ablation studies on alternative feature processing schemes which were not included

in the main paper.

B.1. Comparing various Reweighting Schemes

(a) Explicit reweighting (Default) (b) Implicit reweighting (c) Separated reweighting

Figure B.1. Detailed structure of alternative reweighting networks to comparing with our proposed Explicit reweighting scheme. Note that
(a) is the proposed structure.

In Section 3 of the main paper, we describe our method of reweighting the panoptic encodings Epan to reflect importance.
In this section, we describe alternate methods to perform this reweighting operation. An illustration of these approaches is
provided in Figure B.1.

Explicit reweighting (Default): We display this method in Section 3 of the main paper and use it as the default reweight-
ing method throughout the paper. The reweighting network consists of linear layers followed by a sigmoid layer. It explicitly
multiplies the learned weights with panoptic encodings Epan to produce the final reweighted panoptic encodings Ẽpan. This
method is illustrated in Figure B.1 (a).

Implicit reweighting: Illustrated in Figure B.1 (b), this reweighting network directly computes the final encodings
instead of multiplying computed weights with input encodings. Hence, the weighting operation is implicitly computed and
the panoptic encodings are transformed to weighted encodings.

Separated reweighting: For this reweighting scheme, we process semantic and instance encodings using separate
linear layers and then concatenate them to form a fused implicit representation. This is done to reduce any mismatch in
scale between the two encodings. After concatenation, the reweighting network computes the final encodings in an implicit
fashion. This method is illustrated in Figure B.1 (c).



Method Reweighting # Hidden layers PQ IoU iIoU ∆
Panoptic DeepLab - - 59.9 78.5 62.5 0
Panoptic DeepLab + PISR Default 2 62.2 80.2 64.4 +5.9

Default 4 61.5 79.4 63.7 +3.7
Implicit 2 61.2 79.0 63.3 +2.6
Separate 2 62.0 80.1 64.2 +5.4

Table B.1. On Cityscapes val: Effect of applying various reweighting schemes described in Figure B.1 to generate the weighted Panoptic
Encodings. Gray rows are our models introduced in this paper.

As observed from Table B.1, We obtain the best results using our default explicit weighting scheme using two hidden
layers. Our experiments show that increasing the number of hidden layers of the default network reduces performance. We
hypothesize that the larger number of parameters leads to overfitting this network.

We also observe the decrease in PQ after using the implicit reweighting scheme. This is due to a scale mismatch, as
semantic and instance encodings are computed from different sources. We can fix this issue by processing each of the
encodings using separate linear layers before fusion, which is the input to the implicit network.

B.2. Varying the Correlation functions in Panoptic Relational Attention:

In Section 3.4 of the main paper, we propose a method to perform Panoptic Relational Attention(PRA) to leverage the
relational context between things and stuff. This includes computing the spatial feature map Fsp = gs(Ẽpan)h(F ), which
correlates panoptic encodings and global features. Next, the spatial features are correlated with panoptic encodings, obtaining
the panoptic features Fpan = gp(Ẽ

T
pan)h(Fsp). In this section, we observe various schemes denoted by f1(·, ·) and f2(·, ·)

to compute the correlation for both operations such that Fsp = f1(gs(Ẽpan), h(F )) and Fpan = f2(gp(Ẽpan), h(Fsp). By
default, we assume f1 and f2 to represent the matrix product in the main paper. Table B.2 summarizes the effect of applying
cosine similarity or p-norm distance instead of the matrix product.

Method f1 f2 PQ mIoU iIoU ∆
Panoptic DeepLab - - 59.9 78.5 62.5 0
Panoptic DeepLab + PISR Cosine Sim Matmul 61.4 79.3 63.5 +3.2

Matmul Cosine Sim 61.4 80.0 64.0 +4.5
L2 norm L2 norm 61.7 79.7 63.9 +4.4
Matmul L2 norm 62.1 79.9 64.1 +5.2
Matmul Matmul 62.2 80.2 64.4 +5.9

Table B.2. On Cityscapes val: Effect of varying the correlation functions f1 and f2 to compute correlation from the given panoptic
encodings and backbone features in the Panoptic Relational Attention. CosineSim and MatMul represent Cosine distance and matrix
multiplication respectively.

As observed from Table B.2, we observe that matrix multiplication provides the best results and balances out the improve-
ments in semantic, instance and panoptic segmentation metrics in all cases. Hence, we use this as our default method to
compute correlations in the main paper. On the other hand, using cosine similarity distance for f2 shows lower increase in
PQ whereas using L2 norm distance for f2 displays lower increase in mIoU. We hypothesize that cosine similarity fails to
represent panoptic relationships and L2 norm induces errors in segmentation quality.

B.3. Varying the value of the Intermediate loss weight:

In Equation 1 of the main paper, we discuss the total training loss function. This includes intermediate losses L′
sem and

L′
ins from the initial semantic and instance heads. These are weighted by the term γ. In this section, we discuss the effect of

varying the value of γ after applying PISR to a Panoptic-DeepLab-ResNet50 base network. Table B.3 summarizes the results
on Citysapes val. We find an optimal value of γ = 0.5 and fix it for all the experiments in the paper.

C. Additional Visual Results
In this section, we show further visual results from the ones shown in the paper. First, we show some qualitative examples

on ADE20K. Next, we visualize the panoptic encodings of all the things and stuff classes in a scene.



Method γ PQ mIoU iIoU ∆
Panoptic DeepLab - 59.9 78.5 62.5 0
Panoptic DeepLab + PISR 0.0 61.9 79.5 63.4 +3.9

0.2 61.9 79.9 63.7 +4.6
0.5 62.2 80.2 64.4 +5.9
0.8 61.5 79.3 63.5 +3.6

Table B.3. On Cityscapes val: Effect of varying the intermediate loss weight γ. We find an optimal value at 0.5 and keep it fixed for rest
of the experiments.

C.1. Qualitative Examples on ADE20K

In Figure C.1, we provide more results on ADE20K for qualitative comparison with the base models. These are an
extension to Figure 7. The base model used is Maskformer-R50 and we train it with and without PISR. As observed from the
images, training the base model with PISR shows clear visual improvements.

C.2. Visualizing Semantic and Instance Encodings

We show t-SNE projections of the learned semantic and panoptic encodings in Figure C.2. These encodings are from
a Panoptic-DeepLab-R50 model trained with PISR. To compare their separation, we visualize both semantic and instance
encodings in the same feature space. Note that these are heavy approximations as the encoding space is 256-dimensional. It
can be seen that both the semantic classes and instances are separated. While instances of the same class are closer to each
other than to those of other classes, they are still properly separated and hence, provide more information about the scene
than simply using semantic encodings.

D. Implementation Details
In this section, we describe our implementation details for each experiment in Section 4 of the paper. All our models are

trained using Pytorch on 4 Nvidia Tesla-A100/Tesla-V100 GPUs.

D.1. Cityscapes

Panoptic Deeplab: We use the pytorch version of Panoptic Deeplab open-source implementation to produce baseline
results with ResNet50, ResNet1011 and HRNet2 backbones. We use the default hyper-parameters for reproducing both
baseline and PISR networks. During training, we utilize the standard random scale jittering between 0.5 and 2.0 for data
augmentation and scale back the images to 1024× 2048 for equal size with batch size 32. The networks are trained with the
default ‘poly’ learning rate policy with an initial learning rate of 0.001, and exponent 0.9 for 90k iterations. For the PISR
experiment, we add the PISR block to Panoptic-DeepLab after the centers and semantic segmentation prediction. We apply
the method described in Section 3 to generate panoptic features, and feed these shared features into semantic and instance
segmentation heads. The training loss is obtained from Equation 1 in the main paper where the loss weights for auxiliary loss
is γ = 0.5. The auxiliary loss term is considered as the output of the first prediction from the backbone architecture, and the
final loss is applied after our PISR module. We use 4 Nvidia Tesla-A100 GPUs to train each of these networks.

D.2. COCO

Panoptic Deeplab: We use the same Panoptic Deeplab open-source implementation to produce baseline results with
ResNet501 and HRNet2 backbones. We use the default hyper-parameters for reproducing both baseline and PISR
networks. During training, we utilize the standard random cropping for data augmentation to 640× 640. The training batch
size is 64. The networks are trained with the default ‘poly’ learning rate policy with an initial learning rate of 0.0005, and
exponent 0.9 for 200k iterations. For the PISR experiment, we add the PISR block to Panoptic-DeepLab after the centers
and semantic segmentation prediction. We apply the method described in Section 3 to generate panoptic features, and feed
these shared features into semantic and instance segmentation heads. The training loss is obtained from Equation 1 in the
main paper where the loss weights for auxiliary loss is γ = 0.5. The auxiliary loss term is considered as the output of the

1https://github.com/facebookresearch/detectron2
2https://github.com/bowenc0221/panoptic-deeplab



Figure C.1. Qualitative results on ADE20K: (a) Input images. (b) Ground truth masks. (c) Predictions by MaskFormer (ResNet-50). (d)
Our results by applying PISR to MaskFormer (ResNet-50). After using PISR, the overall panoptic segmentation quality improves. Dashed
boxes highlight sample regions where PISR significantly enhances the baseline prediction.

first prediction from the backbone architecture, and the final loss is applied after our PISR module. We used either 4 Nvidia
Tesla-V100 or Tesla-A100 GPUs to train each of these networks.



Figure C.2. Visualization on Cityscapes: (a) Our prediction results (b) Our t-SNE projections of the learned semantic encodings on a 2D
feature space. (c) Our t-SNE projections of the learned instance encodings are plotted on the same feature-space. Even though the instances
share the same class, they are well separated and provide more information about the scene than simply using semantic encodings.

Panoptic-FPN: We use the official Panoptic-FPN open-source implementation to produce baseline results with ResNet501.
We use the default hyper-parameters for reproducing both baseline and PISR networks. During training, we utilize the
original “1x learning scheme” used for the results in their paper. The training batch size is 16. The networks are trained with
the default multi-step learning rate policy with an initial learning rate of 0.02 for 90k iterations. For the PISR experiment,
we add the PISR block to Panoptic-FPN after the mask proposal and semantic segmentation prediction. We use the method
described in Section 3 on the predicted instance masks and semantic predictions to generate panoptic features, and feed these
shared features into semantic and instance segmentation heads. The training loss is obtained from Equation 1 in the main
paper where the loss weights for auxiliary loss is γ = 0.5. The auxiliary loss term is considered as the output of the first
prediction from the backbone architecture, and the final loss is applied after our PISR module. We used either 4 Nvidia
Tesla-V100 or Tesla-A100 GPUs to train each of these networks.
UPerNet: We use a modified version of the open-source implementation of UPerNet to produce baseline results with
Swin-L. We train the baseline model with both semantic and instance segmentation heads and perform fusion in the post-
processing stage similar to Panoptic-FPN. During training, we utilize the standard random flipping and normalization for
data augmentation. The training batch size is 8. The networks are trained with the ‘step’ learning rate policy with an initial



Figure E.1. Instance heatmaps on Cityscapes:. (a) Prediction without PISR (Panoptic-DeepLab-R50). (b) Car 1 instance heatmap without
PISR. (c) Car 2 instance heatmap without PISR. (d) Prediction with PISR (Panoptic-DeepLab-R50). (e) Car 1 instance heatmap with PISR.
(f) Car 2 instance heatmap with PISR. As observed from the highlighted region and instance heatmaps, both the highlighted cars are well
separated after training with the PISR module.

learning rate of 0.0001 for 36 epochs.
For the PISR experiment, we add the PISR block to UPerNet after the mask proposal and semantic segmentation predic-

tion. We apply the method described in Section 3 to generate panoptic features, and feed these shared features into semantic
and instance segmentation heads. The training loss is obtained from Equation 1 in the main paper where the loss weights
for auxiliary loss is γ = 0.5. The auxiliary loss term is considered as the output of the first prediction from the backbone
architecture, and the final loss is applied after our PISR module. We used 4 Tesla-A100 GPUs to train each of these networks.

D.3. ADE20K

Maskformer: We use the official Maskformer open-source implementation to produce baseline results with ResNet50 and
ResNet1013 backbones. We use the default hyper-parameters for reproducing both baseline and PISR networks. Dur-
ing training, we utilize the standard cropping for data augmentation to 640×640. The training batch size is 16. The networks
are trained with the default ‘poly’ learning rate policy with an initial learning rate of 0.0005, and exponent 0.9 for 720k
iterations. However, we use 4 Nvidia Tesla-A100 GPUs as compared to the 8 GPUs used to produce their baseline results.
For the PISR experiment, we use the mask predictions generated by the MaskFormer network to generate panoptic encodings
Epan, and then generate the panoptic features as described in Section 3. We feed these features into the MLP which produces
mask predictions and obtain the final panoptic segmentation. The training loss is obtained from Equation 1 in the main paper
where the loss weights for auxiliary loss is γ = 0.5. The semantic and instance loss terms are considered together as their
mask loss. The auxiliary loss term is considered as the output of the first prediction from the MaskFormer architecture, and
the final loss is applied after our PISR module.

E. Further Details on Visualizing Semantic, Center and Instance Heatmaps
In this section, we describe our detailed method to generate the overlaid Semantic and Center heatmaps in Figure 5 of

the main paper. We also show a visualization of the intermediate instance heatmaps, which are used to generate instance
encodings as described in Section 3.2 of the main paper.

3https://github.com/facebookresearch/MaskFormer



E.1. Detailed Explanation for Producing Semantic and Center Heatmaps

We generate semantic and center heatmaps for Figure 4 and Figure 5. For the semantic heatmap, we use outputs from the
semantic generators both before and after the PISR block. The output of each semantic generator is Fs ∈ RC×H×W . Here,
C, H , and W indicate the number of defined classes, height and width, respectively. From Fs, we extract only the target class
feature map and apply normalization with the min and max value of the feature map. Therefore, when the region does not
belong to the target class, it has a lower value, making the color of the heatmap close to blue; this represents regions which
are suppressed. On the other hand, regions detected as the target class are in red, and the intensity of red color indicates the
confidence of prediction.

For visualizing instance centers, we use the predicted center heatmap after the non-maximum suppression step. We
multiply the center map with the target segmentation mask to suppress non-target centers. Finally, we apply a Gaussian filter
to help enunciate centers better.

The above semantic heatmaps and centers are overlaid on top of each other in Figure 5.

E.2. Visualizing Instance Heatmaps

In Section 3.2 of the main paper, we describe our method to generate instance heatmaps. In Figure E.1, we visualize the
intermediate instance heatmaps for an image from Cityscapes dataset. We use the Panoptic-DeepLab-R50 network as the
base architecture, and observe the instance heatmaps with and without training with the PISR block. As observed from the
highlighted sections in Figure E.1 (a), the base network fails to segment two cars accurately in the scene. The network fails to
separate these instances as observed from the instance heatmaps for each car, in Figure E.1 (b) and (c). However, we observe
that the network trained with PISR is able to clearly separate the two cars, as seen from both the instance heatmaps as well
as the final prediction shown in Figure E.1 (d).


	. Introduction
	. Additional Experiments
	. Comparing various Reweighting Schemes
	. Varying the Correlation functions in Panoptic Relational Attention:
	. Varying the value of the Intermediate loss weight:

	. Additional Visual Results
	. Qualitative Examples on ADE20K
	. Visualizing Semantic and Instance Encodings

	. Implementation Details
	. Cityscapes
	. COCO
	. ADE20K

	. Further Details on Visualizing Semantic, Center and Instance Heatmaps
	. Detailed Explanation for Producing Semantic and Center Heatmaps
	. Visualizing Instance Heatmaps


