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A. Implementation details
Code avalability. The code of our method is available at
https://github.com/valeoai/POCO.

Framework and hardware. Our code uses PyTorch as
deep learning framework. All experiments were done with
a single NVIDIA RTX 2080 Ti GPU with 11GB memory.

Backbone. We used FKAConv [4] as convolutional back-
bone, with default parameters (number of layers, number of
layer channels). Only the latent vector size n, i.e., the output
dimension of the backbone, was changed. It was set to 32,
which is also the output dimension of all linear layers of the
occupancy decoder (except the last one, which outputs the
occupancy). As a comparison, methods like ConvONet [33]
and LIG [24] also use latent vectors of size 32.

Architecture. The network architecture is described in
Figure 5 of the main paper. We phrase here some parts of it.

The input size of the relative encoder (green area in Fig-
ure 5) is the size of the latent vectors (i.e., the backbone out-
put size) plus the size of point coordinates, i.e., 32+3=35.
All linear layers have an output size of 32, except the multi-
head layer for the computation of significance weights, of

output size h=64, and the final occupancy layer, of output
size 2, corresponding to classes empty and full. The layer
activations all are ReLUs. Batch norms are only used in the
backbone, i.e., the absolute encoder E; there are none in the
relative encoder R, nor in the decoder D.

Point sampling at training time is not part of POCO. We
reused existing dataset samplings (from ConvONet [33] and
Points2Surf [14]) to compare on the same training data. The
other datasets are only used for inference.

Training settings. We train using Adam [26] with learning
rate 10−3. The training batch size is 16 for 3k input points
and 8 for 10k input points. We train for 600k iterations.

B. Meshing for occupancy
Mesh generation, for implicit functions, generally relies

on the Marching cubes (MC) algorithm [29], evaluating oc-
cupancy on a regular 3D grid.

Marching cubes based on refinements (MC-refin). Re-
cently, the MC variant used in ONet [30] has often been
used due to its higher speed. It operates on a coarse grid but
locally refines the resolution thanks to a heuristics: Unless
all corners of a cube at a given resolution agree on being
empty of full, i.e., as soon as two corners of a cube disagree
on occupancy, the cube is subdivided into 8 subvoxels. The
initial grid is typically of size 323, and it is typically refined
(subdivided) up to two times, leading to a local resolution
equivalent to a 1283 grid. The resulting mesh, after MC, is
furthermore simplified [16] and refined using first and sec-
ond order gradient information [30]. While the heuristics
may miss thin details, this MC with refinement (MC-refin)
leads to a much faster running time than plain MC, with a
factor up to 82 when using up to two refinement steps.

Marching cubes based on region growing (MC-regro).
To ensure we have little chances of missing refinements,
in particular for locally complex surfaces or thin volumes,
we use a different strategy. We consider from the outset a
fine-grained resolution but, to prevent many useless queries
in large empty or full regions, we adopt a region-growing
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approach (MC-regro). The seeds are the input points, for
which we compute the occupancy. We then compute the
occupancy for query points that are both in the close neigh-
borhood (voxels at distance at most 2 grid steps) of both a
location in the empty volume and a location in the full vol-
ume, i.e., close to the surface. And we iterate.

Besides, with the Marching cubes algorithm, a vertex
is placed on the edge of a cube by linearly interpolating
the two scalar values at the edge’s endpoints. But contrary
to distance fields, occupancy fields may have sharp tran-
sitions. Consequently, opposite-side endpoints frequently
have values close to 0 and 1, and vertices tend to be placed
in the middle of segments, creating discretization effects.
To prevent it, we perform a dichotomic search along edges
to better locate the occupancy transition. We operate 10 di-
chotomies, which is more than enough in most cases.

In general, reconstructions with MC-regro are qualita-
tively better than MC-refin on scenes, but similar on ob-
jects. In fact, quantitative results on ShapeNet show a sim-
ilar reconstruction accuracy of POCO with either MC-refin
or MC-regro. The reason probably is that thin details have
little impact on the different metrics. This ability to capture
thin details makes MC-regro generally slower than MC-
refin (see Section C, Table 7).

C. Running times

Some running times are given in Figures 1 and 4 in the
paper, as well as here in Tables 6 and 7.

The time for the backbone to extract features is negligi-
ble (< 1%). The bottleneck is the decoding, as we have to
respond to many occupancy queries depending on the reso-
lution of the Marching cubes (MC). And to answer an MC
query, the bottleneck is the computation of nearest neigh-
bors, which currently is not optimized, requiring communi-
cations between the GPU and the CPU. (It could probably
be optimized by pre-computing neighbors at low MC reso-
lution to reduce the GPU-CPU communication overhead.)

In contrast, grid-based methods such as those based on
ConvONet [28, 33, 37] do not need such an optimization as
they do not depend on nearest neighbors. However, while
our approach requires extracting one feature per point for
encoding (typically a few thousands points for an object),
these other methods extract one feature per grid cell, typi-
cally 643 ≈ 262k. Besides, as we show in the paper, losing
input points induces a loss of details.

Impact of test-time augmentations. Although in this
case, because of the high point-cloud density (50k pts),
we apply the test-time augmentation (TTA) strategy and
run the latent vector inference on many different point
cloud subsamples (such that each point is seen at least
Nview =10 times), our method is still significantly faster
than Points2Surf.

Method and setting Time

Points2Surf
Full reconstruction (single thread) 23 min 48 s
Full reconstruction (1 thread per model) 10 min 15 s

POCO (Ntrain =Ntest =3k, Nview =10)
Only inference of latent vectors 38 s
Full reconstruction (single thread) 4 min 27 s

Table 6. Running time for reconstructing the 4 models of the
Real-World dataset (50k pts each) using Points2Surf or POCO.

Method MC-refin MC-regro Time

SA-ConvONet ✓ 245.7 s
LIG (5k iter.) ✓ 104.5 s
LIG (3k iter.) ✓ 66.2 s
Points2Surf ✓ 38.4 s
SPR ✓ 14.9 s
Neural Splines ✓ 12.7 s
ConvONet ✓ 0.6 s

POCO ✓ 10.7 s
POCO ✓ 2.5 s

Table 7. Average reconstruction time of different methods for
ShapeNet shapes from 3k points using the same 1283 grid size
for the Marching cubes (MC), although with different heuristics
and MC variants. MC-refin is the commonly-used MC variant in
[30] that operates on a 323 grid and potentially refines it locally
twice into a local resolution equivalent to a 1283 grid. MC-regro
is our region-growing variant of the Marching cubes that directly
operates on a 1283 grid, although sparsely (see Section B).

In fact, as our encoding time is negligible compared to
the numerous decoding queries for meshing with MC, our
TTA strategy at feature level brings little slowdown, e.g.,
+5% for Nview =10, compared to Nview =1.

Overall reconstruction time. In Table 7, we report the av-
erage reconstruction time of different methods. To be fair,
given that mesh generation via occupancy queries is a run-
ning time bottleneck, we compare the methods using the
same MC algorithm, namely MC-refin with a coarse grid
of size 323 that can be refined up to twice, i.e., into a grid
of size 1283. We also report the running time of POCO
with our MC-regro variant on a grid of size 1283. As said
in Section B, the quantitative results of POCO with either
MC-refin or MC-regro are similar.

On ShapeNet with medium-density points clouds (3k
points per shape), we rank second behind ConvONet for
speed. Note however that LIG is faster on denser scenes
(see Figure 4 of the main paper) as the computation time per
patch is constant, while our kNN search based on a kd-tree
gets slower. (It could be faster by precomputing neighbors
in the data loader, to limit GPU-CPU exchanges.)



D. Receptive field
A question that naturally arises to understand the power

and benefits of different approaches is the size of the recep-
tive field for inferring occupancy features.

Because it is based on nearest neighbors, the receptive
field of the backbone varies based on the scene geometry.
It naturally tends to augment with the number of layers but
sometimes, as when a separate group of points are mutual
neighbors, the local receptive field does not increase.

To evaluate the actual (in fact, maximum) receptive field
of a given point, we apply the following procedure:

1. We use a variant of the network without ReLUs and
where the convolutions are replaced with averaging.

2. We apply the loss on a single output location.
3. We back-propagate the loss signal.
4. We identify input points receiving a non-zero gradient.

On a SceneNet living-room scene, with density 100 pts/m2,
we obtain an average receptive field of 29k points when
looking at non-zero gradient (see Figure 7). If we only look
at points for which the back-propagated gradient has a norm
greater than 10−7 (i.e., a significant gradient), then the re-
ceptive field encompasses 16k points.

Figure 7. Receptive field of the FKAConv backbone on a point
cloud from SceneNet with density 100 pts/m2. The receptive field
of the point marked in green is colored in red.

E. Experiments
E.1. Choice of compared methods and datasets

Following the success of methods such as AtlasNet [19]
and DeepSDF [31], a dozen of new learning-based recon-
struction methods have been published every year.

As said in the main paper, existing methods often per-
form well in some settings but not in others. Consequently,
most published papers tend to evaluate on different datasets
(see Table 9) or in specific configurations: low or high den-
sity of train/test points, with or without added noise and out-
liers, with or without oriented normals, training specifically
for a class of shapes or generalizing to any shape, address-
ing single object or whole scene reconstruction, etc. Some
methods are also too slow to be evaluated on full datasets

Train Test Train set Test set

object object ShapeNet ShapeNet

object object ABC ABC, Thingi10k,
RealWorld, Famous

object scene ShapeNet SceneNet

scene scene Synthetic Synthetic Rooms,
Rooms MatterPort3D

Table 8. Datasets used for training and testing. Italic: datasets
used in a generalization setting, including from objects to scenes.

and report results only on dataset fractions. Last, although
most methods make code available, some do not offer pre-
trained models, or scripts, or parameters (at the time of writ-
ing). This makes comparisons particularly difficult.

We chose to compare to some of the most cited or most
recent methods. To be fair with these methods, we evalu-
ate in their setting (when enough information is provided to
do so) rather than impose them other specific settings. It
also illustrates the ability of our method to adapt to various
configurations. Method codes are referenced in Section F.3.

The datasets that we used in our experiments are listed
in Table 8. Datasets references are in Section F.3.

• On SceneNet, we chose points with normals, which
allows comparing to LIG (which requires normals).

• On MatterPort3D, we chose points without normals,
allowing comparison to SA-ConvONet but not to LIG.

• On ShapeNet, we chose in the main paper points with-
out normals and with noise, allowing comparison to
ConvONet; in this supplement, we use points with nor-
mals and without noise, allowing to compare to LIG.

E.2. Metrics

We use exactly the same evaluation metrics as Con-
vONet [33], as specified formally in the supplementary ma-
terial. However, for our report to be more self-contained,
we reformulate here explicitly the metrics that we use.

The surface metrics measure different forms of devia-
tions between two surfaces, i.e., the deviation between the
reconstructed surface and the ground-truth surface. In prac-
tice, the metrics are approximated by replacing the contin-
uous distances by the distances between points sampled on
both surfaces. In particular, the distance of a point p to a
surface S is approximated by the distance of p the near-
est point q sampled on surface S. In our experiments, we
sample on each surface: 100k points for ShapeNet and Syn-
thetic Rooms; 10k for ABC, Famous and Thingi10k; and
4M points for SceneNet. As can be seen by the perfor-
mance of ‘Oracle’ in Table 5 of the paper, which compares
the ground-truth against itself via two different samplings,
this discretization is a reasonable approximation, although
POCO gets close to the error margin when the point cloud
is dense and the normals are provided.
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AdaConv [38] ✓ ✓ ■⊥

ConvONet [33] ■ □ ■ ■

DeepLS [5] ✓ ✓ □

DeepSDF [31] ✓ ■

DefTet [15] ✓ ✓ ■

DP-ConvONet [28] ■ ■

IF-NET [9] ■

IGR [18]

IM-NET [8] □

LDIF [17] ✓ ■

LIG [24] ✓ ■⊥ ■⊥ ■⊥

MetaSDF [36] ✓ □

NDF [10] ✓ □

Neural-Pull [3] □ □

Neural Splines [39] ✓ □⊥

ONet [30] ■⊥

Points2Surf [14] □ □ □

RetrievalFuse [35] ✓ ■ ■* ■*

SA-ConvONet [37] □ □ □ □

SAIL-S3 [40] ✓ ✓ □ □

SAL [1] ■

SALD [2] ✓ ✓ ■

SAP [32] ■

ScanComplete [13] ■*

SG-NN [12] ■*

SPR [25] ✓

POCO (ours) □ □ ■ □ □ ■⊥ ■

Table 9. Datasets used for the evaluation of 3D reconstruction methods from point clouds in their published paper, if freely available
and > 10 shapes are used, and availability of code or pre-trained models suited for testing on the datasets (at the time of writing).

■: test on all/many shapes of the dataset (> 1000), □: test on a few shapes (≤ 100 or a single category), ⊥: test with ground-truth
normals as input, *: actual scans rather than uniformly sampled points.

Tests on a given dataset may however be done in different settings (number of sampled points, amount of added noise or outliers,
use many shapes but excluded classes or objects, etc.). For instance, many different numbers can be found in various publications for the
performance of ONet on the ShapeNet dataset.



Chamfer distance (CD). The Chamfer distance between
two point clouds P1, P2 is defined as follows:

Chamfer(P1, P2) =
1

2 |P1|
∑

p1∈P1

min
p2∈P2

d(p1, p2)

+
1

2 |P2|
∑

p2∈P2

min
p1∈P1

d(p1, p2)

where d(p1, p2) is the distance between points p1, p2. In the
paper, following ONet [30] and ConvONet [33], we use the
L1-norm. What we name ‘CD’ in tables is Chamfer× 102.

Normal consistency (NC). The normal consistency be-
tween two point clouds P1, P2 is defined as follow:

NC(P1, P2) =
1

2 |P1|
∑

p1∈P1

np1 .nclosest(p1,P2)

+
1

2 |P2|
∑

p2∈P2

np2 .nclosest(p2,P1)

where

closest(p, P ) = argmin
p′∈P

d(p, p′)

is the closest point to p in point cloud P and where np is the
normal at point p, given by the orientation of the mesh face
on which the point is sampled.

F-Score (FS). The F-Score between two point clouds P1

and P2 at a given threshold t is given by:

FS(t, P1, P2) =
2Recall Precision
Recall + Precision

where

Recall(t, P1, P2) =

∣∣∣∣{p1 ∈ P1, s.t. min
p2∈P2

d(p1, p2) < t

}∣∣∣∣
Precision(t, P1, P2) =

∣∣∣∣{p2 ∈ P2, s.t. min
p1∈P1

d(p2, p1) < t

}∣∣∣∣
In the paper, following ONet [30] and ConvONet [33], we
use t = 0.01.

Intersection over Union (IoU). Compared to the previous
metrics, which evaluates the quality of the generated sur-
face, the IoU is a volume metric.

Noting TP (resp. FP and FN) the number of true pos-
itive, i.e., the number of points correctly predicted as full
(resp. the number of points wrongly predicted as full, and
the number of points wrongly predicted as empty), the IoU
is defined as follows:

IoU =
TP

TP + FP + FN

E.3. More qualitative results

POCO vs LIG on ShapeNet (various densities). We pro-
vide on Figure 8 more visualizations of ShapeNet recon-
structions, comparing LIG to POCO at various densities of
input points (with normals). LIG reconstructions were done
using the best parameter setting for the method, i.e., with
part size 0.20 for 512 and 2048 points, and part size 0.10
for 8192 points. Nevertheless, POCO reconstructs surfaces
with more robustness and much sharper details.

POCO vs SPR and LIG on SceneNet (various densities).
As a complement to Table 5 in the main paper, we provide
here on Figure 9 the visualization of a reconstruction frag-
ment of a SceneNet scene, also with varying input point
densities, comparing SPR, LIG and POCO. As can be seen,
POCO provides a better robustness at low point densities
and more details at high point densities.

POCO vs SPR (generalization ability). In fact, POCO
out-of-the-box adapts well to new shape domains without
retraining (Figures 1, 3, 4 and Table 2), especially when
given normals (Table 5). SPR only works well on high-
density point clouds (Figure 4, Tables 2, 4, 5).

POCO vs ConvOnet on Synthetic Rooms. As a comple-
ment to Table 4 in the main paper, we provide here on Fig-
ure 10 the visualization of reconstructions on the Syntheti-
cRooms dataset (2 first scenes of each data bunch), com-
paring ConvOnet and POCO. In general, we provide more
and sharper details; we are also more robust to thin surfaces,
e.g., selves of the bookcase in “Room 05 - scene 801” and
coffee table in the foreground of “Room 08 - scene 801”.

E.4. More quantitative results

POCO vs PointConv, ONet and ConvOnet on ShapeNet.
As a complement to Table 3 in the main paper, we provide
here in Table 10 classwise quantitative results on ShapeNet,
comparing POCO to PointConv, ONet and ConvONet (the
3× 642 variant, that performs best on ShapeNet).

PointConv is a baseline method which is defined in the
ConvONet paper [33]. It proceeds as follows: point-wise
features are extracted using PointNet++ [34], interpolated
using Gaussian kernel regression and feed into the same
fully-connected network used in ConvONet [33]. While this
baseline uses local information, it does not exploit convolu-
tions. ONet [30] is not convolutional either; it operates on
shapes as a whole.

As can be seen in the table, POCO largely outper-
forms the compared methods on all categories, especially on
classes featuring complex details such as lamp, rifle, vessel
and, to a lesser extent, airplane, car, chair and loudspeaker.
Yet, the most difficult classes are more or less the same for
all methods, including POCO: lamp and car.



512 pts 2048 pts 8192 pts
Input LIG POCO Input LIG POCO Input LIG POCO

Figure 8. ShapeNet reconstructions (input with normals), LIG (part size 0.20 for 512 and 2048 pts, 0.10 for 8192 pts) and POCO (ours).



Figure 9. Reconstruction fragment of a SceneNet scene with varying input point densities for SPR, LIG and POCO.
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Figure 10. Synthetic Rooms reconstructions using ConvONet and POCO (ours), from 10k points with noise.

Input ConvONet POCO Input ConvONet POCO

Room 04 - scene 801 Room 04 - scene 802

Room 05 - scene 801 Room 05 - scene 802

Room 06 - scene 801 Room 06 - scene 802

Room 07 - scene 801 Room 07 - scene 802

Room 08 - scene 801 Room 08 - scene 802



IoU ↑ CD↓
Category PointConv ONet ConvONet POCO PointConv ONet ConvONet POCO

Airplane 0.579 0.734 0.849 0.902 1.40 0.64 0.34 0.23
Bench 0.537 0.682 0.830 0.865 1.20 0.67 0.35 0.28
Cabinet 0.824 0.855 0.940 0.960 1.15 0.82 0.46 0.37
Car 0.767 0.830 0.886 0.921 1.49 1.04 0.75 0.41
Chair 0.667 0.720 0.871 0.919 1.29 0.95 0.46 0.33
Display 0.743 0.799 0.927 0.956 1.06 0.82 0.36 0.28
Lamp 0.495 0.546 0.785 0.877 2.15 1.59 0.59 0.33
Loudspeaker 0.807 0.826 0.918 0.957 1.48 1.18 0.64 0.41
Rifle 0.565 0.668 0.846 0.897 0.98 0.66 0.28 0.19
Sofa 0.811 0.865 0.936 0.963 1.04 0.73 0.42 0.30
Table 0.654 0.739 0.888 0.924 1.13 0.76 0.38 0.31
Telephone 0.856 0.896 0.955 0.968 0.61 0.46 0.27 0.22
Vessel 0.652 0.729 0.865 0.927 1.38 0.94 0.43 0.25

Mean 0.689 0.761 0.884 0.926 1.26 0.87 0.44 0.30

NC ↑ FS↑
Category PointConv ONet ConvONet POCO PointConv ONet ConvONet POCO

Airplane 0.819 0.886 0.931 0.944 0.562 0.829 0.965 0.994
Bench 0.811 0.871 0.921 0.928 0.617 0.827 0.964 0.988
Cabinet 0.895 0.913 0.956 0.961 0.719 0.833 0.956 0.979
Car 0.845 0.874 0.893 0.894 0.577 0.747 0.849 0.946
Chair 0.851 0.886 0.943 0.956 0.618 0.730 0.939 0.985
Display 0.910 0.926 0.968 0.975 0.679 0.795 0.971 0.994
Lamp 0.779 0.809 0.900 0.929 0.453 0.581 0.892 0.975
Loudspeaker 0.894 0.903 0.939 0.952 0.647 0.727 0.892 0.964
Rifle 0.796 0.849 0.929 0.949 0.682 0.818 0.980 0.998
Sofa 0.900 0.928 0.958 0.967 0.697 0.832 0.953 0.989
Table 0.878 0.917 0.959 0.966 0.694 0.824 0.967 0.991
Telephone 0.961 0.970 0.983 0.985 0.880 0.930 0.989 0.998
Vessel 0.817 0.857 0.919 0.940 0.550 0.734 0.931 0.989

Mean 0.858 0.891 0.938 0.950 0.644 0.785 0.942 0.984

Table 10. Classwise ShapeNet reconstruction. All models are trained on 3k noisy points. Results for methods other than POCO are
reported from the supplementary material of ConvONet [33].



F. Use of existing assets

F.1. Pre-existing code

The implementation of our approach has several depen-
dencies, that are all free to use for research purposes. The
main dependencies of our code are as follows:

• FKAConv1 [4], under Apache License v2.0.

• PyTorch2, under the Apache CLA,

• PyTorch-Geometric3, under the MIT License,

The code of POCO4 itself is freely available, under Apache
License v2.0.

F.2. Datasets

For the experiments, we used several datasets that are
freely available for research purpose:

• ABC5 is under the Onshape Terms of Use6. We used
the subset preprocessed and made available by the au-
thors of Points2Surf18 [14].

• Famous is a set of shapes of various origins, among
which the Stanford 3D Scanning Repository7 [27].
This set of shapes is described, preprocessed and made
available by the authors of Points2Surf18 [14].

• MatterPort3D8 [6] is under a user license agreement
for academic use. We used scenes preprocessed by the
authors of SA-ConvONet19 [37].

• Real-World point clouds used in the paper are de-
scribed, preprocessed and made available by the au-
thors of Points2Surf18 [14].

• SceneNet9 [20–22] is under the CC BY-NC 4.0, for
research purposes only. We made meshes watertight
using Watertight Manifold10 [23], that enables code
use under mild conditions.

• ShapeNet11 [7] has a licence for non commercial re-
search or educational purposes. We used the version
of ShapeNet as preprocessed by the authors of ONet12

[30], which itself reuses the preprocessing of the au-
thors of 3D-R2N213 [11].

1https://github.com/valeoai/FKAConv
2https://pytorch.org/
3https://pytorch-geometric.readthedocs.io/
4https://github.com/valeoai/POCO
5https://deep-geometry.github.io/abc-dataset/
6https://www.onshape.com/en/legal/terms-of-use
7http://graphics.stanford.edu/data/3Dscanrep/
8https://niessner.github.io/Matterport/
9https://robotvault.bitbucket.io/

10https://github.com/hjwdzh/Manifold
11https://shapenet.org/
12https://github.com/autonomousvision/occupancy_

networks
13https://github.com/chrischoy/3D-R2N2

• Synthetic Rooms15 is a dataset created by the authors
of ConvONet [33] based on ShapeNet models.

• Thingi10K14 [41] is a freely available collection of
shapes under various licences. We used the subset
preprocessed and made available by the authors of
Points2Surf18 [14].

F.3. Methods

We compared to a number of reconstruction methods,
reusing the code made available by their authors:

• ConvONet15 [33] under the MIT License.

• LIG16 [24] probably under Apache License v2,

• Neural Splines17 [39] under the MIT License,

• Points2Surf18 [14] under the MIT License,

• SA-ConvONet19 [37] under the MIT License,

• SPR20 [25] under the MIT License.

We also compared to AtlasNet [19], DeepSDF [31], DP-
ConvONet [28], ONet [30], but only reusing the numbers
mentioned in [28, 33].

Here are some methods we would have liked to compare
to, but could not in practice:

• AdaConv21 [38]: The repository provides raw code
but no pre-trained model nor instructions or scripts to
train or to test, which may lead to misuses and wrong
comparisons.

• NDF22 [10]: The repository provides code but only
a pre-trained model for ShapeNet cars. For scene re-
construction, it does not offer preprocessed data or
any data preprocessing procedure to retrain a model,
nor instructions to run NDF using a sliding window
scheme, as alluded to in the supplementary material.

As indicated in Table 9, some authors also have not made
their code or their model available to allow comparisons.

G. Societal impact
We believe our 3D reconstruction approach has very lit-

tle potential for malicious uses (including disinformation,
surveillance, invasion of privacy, endangering security), not

14https://ten-thousand-models.appspot.com
15https : / / github . com / autonomousvision /

convolutional_occupancy_networks
16https : / / github . com / tensorflow / graphics /

tree/master/tensorflow_graphics/projects/local_
implicit_grid

17https://github.com/fwilliams/neural-splines
18https://github.com/ErlerPhilipp/points2surf
19https://github.com/tangjiapeng/SA-ConvONet
20https://github.com/mkazhdan/PoissonRecon
21https://github.com/isl-org/adaptive-surface-

reconstruction
22https://github.com/jchibane/ndf



more, e.g., than image enhancement methods in the 2D data
case, and not more than hundreds of previously published
3D reconstruction methods. Besides, we are not bound nor
promoting any dataset that would lead to unfairness in any
sense. The use of our method has a modest environmental
impact as the training time (a few days on a single GPU for
a large dataset) and the inference times (minutes, or hours
for very large point clouds) are somewhat moderate, and
favorably compare to many learning-based approaches.

On the contrary, applications of our method can be found
in various domains, with positive societal impacts:

Heritage preservation. Digitizing cultural objects and
monuments allows a form of heritage preservation and en-
ables virtual museums to make works of art and culture
more widely accessible.

Infrastructure and building maintenance. Recon-
structing models of existing infrastructures and buildings is
of high interest for the construction industry. These models
are particularly useful to plan and organize maintenance.
This is particularly useful in a context of aging infrastruc-
tures and building renovation for energy-saving insulation.

Augmented and virtual reality. Surface and volume
reconstruction are useful assets for augmented and virtual
reality, whether it is for professional use (e.g., on-site main-
tenance of equipment) or entertainment (video games, spe-
cial effects for the film industry), which is however to be
consumed in moderation.
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