Automatic Relation-aware Graph Network Proliferation
— Supplementary Material —

Shaofei Cai'?, Liang Li'? Xinzhe Han'2, Jiebo Luo®, Zheng-Jun Zha*, Qingming Huang®?"°
'Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China
ZUniversity of Chinese Academy of Sciences, Beijing, China, *University of Rochester
4University of Science and Technology of China, China, °Peng Cheng Laboratory, Shenzhen, China

{shaofei.cai, xinzhe.han}@vipl.ict.ac.cn,liang.li@ict.ac.cn,

jluo@cs.rochester.edu, zhazj@ustc.edu.cn, gnhuang@ucas.ac.cn

A. Search Space Details

In this section, we first detail how node-learning opera-
tions and relation-learning operations are formulated. Then
we introduce the design of task-based layers for different
graph learning tasks. V' € R"*% E ¢ R™*2 are node
features and relation features that are fed forward to node-
learning and relation-learning operations, respectively. n
and m are the number of nodes and edges of the input graph
data.

A.1. Node-learning Operations

As discussed in the body content, a node-learning op-
eration og,m) computes the transformed information from
feature vertex V; to V;, which is denoted as V;,; =
OS’])(Vi, E;, fi ;). Specifically, given node t on the graph,
its transformed node feature V', ; is formulated as

V;t_m = fi,j({7s,t®‘/is + ﬁs,t|5 € N(f)}),

s ()
Vs, ts ﬂs,t = g(E1 7t; 9)7

where, A (¢) denotes the set of neighbors of target
node t on the graph, f;; is an aggregating function.
g(+) is a two-layer multilayer perceptron to compute the
affine transformation with the learnable parameters 8 =
(Wt W2 Wk WP], which is formulated as

Vst Bsi] = o(a(EJ'WHW?2) [WE Wb, (2)

where o(-) is the rectified linear unit. The difference be-
tween different node-learning operations lies in the choice
of message aggregating functions. We design 8 candi-
date aggregating function options, i.e., V.MEAN, V_SUM,
V_MAX, V_STD, V.GEM2, V_.GEM3, zero and skip-connect
for capturing different types of information. For clarity, we

*Corresponding author.

denote M ; as the modulated incoming message from node
t to node s, where M, ; = 75+ © V;° 4 3, ;. The mean ag-
gregation of neighboring messages is denoted as

1
M)= —— M, ;. 3

V_MEAN is the average of neighboring messages, which
captures the mean statistics of neighboring messages [4],
written as

Vi:j = e (M). C))

V_SUM is the sum of neighboring messages, which cap-
tures local structural information [9], written as

Vi, = IN()] x pe(M). Q)

V_MAX is the max of neighboring messages, which cap-
tures the representative information [9], written as

t
Vil = Jnax M . (6)

V_STD is the standard deviation of input feature set, which
captures the stability of neighboring messages [2], i.e.,

Vi) = VReLU (1(M?) = ju(M)) +¢, ()
where ReLU is the rectified linear unit used to avoid nega-
tive values caused by numerical errors and € is a small pos-
itive number to ensure the output is differentiable [2].

Moreover, we also introduce Generalized Mean Pooling
(GeM) for aggregating messages, which can focus on learn-
ing to propagate the prominent message [1], written as

GeM,;(M,a) = {/ReLU (i, (M) +¢, (8)

where « is the hyper parameter. Here, we adopt two widely
used parameters to construct the node-learning operations,
i.e., V.GEM2 and V_.GEM3.

V_GEM2:

V', = GeMy(M,?2).)
V_.GEM3:
Vi,; = GeMy(M.,3). (10)

skip-connect is to enhance the central node information and
mitigate the gradient vanishing, written as
t t
Vi, =V} (11)
zero operation is included in the search space to indicate a
lack of connection. Links that are important should have a
low weight in the zero operation [6]. It is formulated as

Vi . =0.x V! (12)

i—J
A.2. Relation-mining Operations

A relation-mining operation o(gi’j) computes the trans-

formed relational information E;_,; = og’]) (Vi, Ei, hi j).
h;; is a relation-mining network, such as substraction,
hardmard product, gauss kernel, etc. Specifically, given a
specific edge (s,t) on the graph, E;"* ; is computed using
feature-wise linear modulation:

E} =71 0 B + Bay,

(13)
78,1‘,7 ﬁs,t = hi,j(‘/isa ‘/1t7 9))

Ys,t5 Bs,¢ 1s the affine transformation learned by h; ; with
the learnable parameters 8 = [Wl wW?2 Wk W"]
and relation function h* (-, -)

et Bat] = o(o(h* (V2 VHWHW?) [Wr W],
(14)
where o(-) is the rectified linear unit. The difference be-
tween different relation-mining operations lies in the choice
of relation functions h*(-,-). We design 8 candidate re-
lation functions, i.e., E_.SUB, E_.GAUSS, E_HAD, E_MAX,
E_SUM, E_MEAN, skip-connect, and zero for capturing dif-
ferent types of relational information.
E_SUB captures the relative change between two nodes. Its
relation function is computed as

(VS V) =VE =V (15)

E_GAUSS measures the distance between the central node
and its neighboring nodes:

Ve -V

20

W (V2 V) = exp() (16)

E_HAD emphasizes on learning the commonalities between
the central node and its neighbors:

W (Ve V) =VEoV! 17

E_SUM.
WV V) =V + VY (18)
E_MAX:
(Ve V) = max(Vy, V) (19)
E_MEAN: v Vi
WV V) = S 20)

skip-connect operation is to enhance the original relational
information and mitigate the gradient vanishing, written as

(Yt Bsi]=1[1 0] (21)

zero operation is included in the search space to indicate a
lack of connection. Links that are important should have a
low weight in the zero operation [6]. It is formulated as

[Ys.t Bsi] =1[0 0] (22)
A.3. Task-based Layer

We design the final network layers depending on the
specific task. Suppose there are 8 node feature vertices
{V1,--+, Vg} and 8 relation feature vertices { E1, - - - , Eg}
in our GNN architecture, we compute the global node fea-
tures V;;, and global edge features E, using the following
formula

Vy = o(BN (V][---[|Vs] Wv)),

E,=o(BN(B - |Bs W),

where Wy, € RIvxdv Wy ¢ RIEXIE gre the learn-
able parameters, BN denotes batch normalization opera-
tion, o () is the rectified linear unit, [-||-] denotes the feature
concatenation operation. The global graph representation
G, is computed using mean-pooling readout operation over
global node features and global edge features, i.e.,

1 i
@ng

i€V,

1 s,t
1B, Y. B, @
9 (s,t)eE,

G, =

where |V, | is the number of nodes, |E,| is the number of
edges. Notably, this is different from the traditional GNN
architecture whose global graph representation is only con-
structed on the readout of node features. Since our method
can learn both node features and relation features, they are
all leveraged to construct the global graph representation.
This helps the graph representation embeds more useful re-
lational information.

Node-level task layer. For node classification task, the
prediction of node 7 is done as follows

where Cy € R% X"V is the node classifier, ny is the num-
ber of node classes.

Edge-level task layer. For edge classification task, our
method naturally makes prediction based on deep relation
features Ey, formally written as

y*' = E;'Ch, (26)

where C € R4EX"E ig the edge classifier, ng is the num-
ber of edge classes. This is better than traditional GNN
works [3, 5,8, 9] that concatenate the entity features as edge
features, since the independent edge feeatures (associated
with the relational information) are more discriminitive for
edge-level tasks.

Graph-level task layer. For graph classification and re-
gression tasks, we make the prediction based on the global
graph representation, i.e.,

y=G,Cq, 27)

where C € R4v+de)xne . is the number of graph
classses. If it is graph regression task, then ng = 1.

B. Network Differentiation Details

An architecture is represented as a directed acyclic graph
(DAG) with {V,L}, where V = {X} is the set of fea-
ture vertices and L = {e(X;, X, O)} is the set of directed
links. Each directed link e(X;, X, O) can transform the
features from X; to X; using an operation O, where O is
either a specific operation o or a mixture operation 0. The
mixture operation 6(7) is parameterized by architectural
parameters a("7) as a softmax mixture over all the possible
operations within the operation space O, i.e.,

(4,4)
.. ETP\ o
5(27j)(XZ,) - E P 21,7],) o(X;). (28)
ocO Z()/EO exp(ozo,)

For each operation o(69) it is associated with the network
weights w (7).

The network differentiation aims to differentiate the
local supernets into several specific subnets. Specifi-
cally, after network division and before network differen-
tiation, the current architecture contains two kinds of links
e(X;, X;,0) and e(X;, X;,0). After network differenti-
ation, there is only one kind of links, i.e., e(X;, X;,0),
where a valid architecture is obtained. This procedure can
be implemented by some differentiable architecture search
strategies (DARTS [7], SGAS [6], etc.). Taking DARTS as
an example, the learning procedure of the architectural pa-
rameters involves a bi-level optimization problem, i.e.,

mfi‘n Loyal (W* (-’4)7 .A), (29)
st W* (A) = aTgmin Etrain (W7 A)a (30)
w

where Ly,.qin and L,,; are the training and validation loss,
respectively. W is the set of network weigths {w("/)}

and A is the set of the architectural parameters {a(7)}.
DARTS [7] proposes to solve the bi-level problem by a
first/second order approximation. At the end of the search,
the final architecture is derived by selecting the operation
with the highest weight for each mixture operation, i.e.,

6" « argmaz o). (31)
ocO

C. Visualizing Hierarchical Features

In this section, we provide more examples of the learned
relation and node features on ModelNet40. The visualiza-
tion results are reported in Figure 1.

D. Searched Architectures

We illustrate our searched GNN architectures using the
proposed network proliferation search paradigm in Figure
2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20.

References

[1] Maxim Berman, Hervé Jégou, Andrea Vedaldi, lasonas
Kokkinos, and Matthijs Douze. Multigrain: a unified image
embedding for classes and instances. ArXiv, abs/1902.05509,
2019. 1

[2] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro
Lio’, and Petar Velickovic. Principal neighbourhood aggre-
gation for graph nets. NIPS, 2020. 1

[3] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking graph
neural networks. arXiv preprint arXiv:2003.00982, 2020. 3

[4] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In NIPS, 2017.
1

[5] Thomas Kipf and Max Welling.
sification with graph convolutional networks.
abs/1609.02907, 2017. 3

[6] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1620-1630, 2020. 2, 3

[7] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Dif-
ferentiable architecture search. ArXiv, abs/1806.09055, 2019.
3

[8] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio’, and Yoshua Bengio. Graph attention
networks. ArXiv, abs/1710.10903, 2018. 3

[9] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? ArXiv,
abs/1810.00826, 2019. 1, 3

Semi-supervised clas-
ArXiv,

Figure 1. Visualization of the learned hierarchical relation and node features for 3D point cloud recognition. Relation features with dif-
ferent edge color distributions have different message-passing preferences. Node features with different node color distributions represent
different clustering effects.

Figure 2. [llustration of the searched architecture with the size of 2 on the ZINC dataset.

V_Sum(+E_{inl1}) Max(+E_{in0}) _Max(+V_{in1})

" Max(+E_{in0})

Figure 3. Illustration of the searched architecture with the size of 4 on the ZINC dataset.

Max(+E_{in0})
|V_Sum(+E_{in1})

 Max(+E_{in0})

‘ E_Sub(+V_{in0}) [E_Max(+V_{in1})
E2

Sum(+E_{in0})

Max(+E_{in0})

Max(+E_{in0})

Figure 4. [llustration of the searched architecture with the size of 8 on the ZINC dataset.

E Max(+V_{in1))

¥ Max(+E_(in0})

Sum+V_{in0))

IV Max(+E_{n0))
¥ Max(+E_{1n0))

Max(+E (in0))

Figure 5. Illustration of the searched architecture with the size of 16 on the ZINC dataset.

V {in0}

V_{in0}

V Gem3(+E2)

Vi

V {in1}

Q/IZXHE{WI

" Max(+E {inl})

kSumHEl)

V2

/

Vout

E_{in0}

E {in1}

@1)

N

Eout

M;nO})fSub(+V{inl H

E Sub(+V {in0}) | E1l

Figure 6. Illustration of the searched architecture with the size of 2 on the CLUSTER dataset.

“Gem2(+E1)

VSum(+E2//

V {in1}

\wimo })P//_I

V_Sum(+E _{in0}) %8

V3

" Gem3(+E3)

Vout

" Max(+E {inl})

E Sub(+V {in0})

E_Sub(+V2)

E3

E_Had(+V3) J;

E {in0}

E {inl}

E I El
E Sum(+V1)
V &
E2

E Gauss(+V2)

E4

Eout

E_Sum(+V {in0}) /& Sub(+V {in1})

Figure 7. Illustration of the searched architecture with the size of 4 on the CLUSTER dataset.

Max(+E_{in1})

E_Sub(+V_{in1})

Sub(+V_{in0})

Figure 8. Illustration of the searched architecture with the size of 8 on the CLUSTER dataset.

Max(+E_{in1})

Sum(+V_{in0})

[E_Sum(+V_{in1))

[Had(+V_{in0))

[E Max(+V_{in0})

E_Gouss(+V8)

[E_Gauss(+V8)

E_Max(+V15)

Figure 9. Illustration of the searched architecture with the size of 16 on the CLUSTER dataset.

V_{in0} V {in1} E_{in0} E {inl}

WZO})lVMaX(+E{in1 H i:l /4

V_Mean(+E {in0}) Vi1 E1l 1
v/((3enr12(+1~:1) \::\Sum(wn
A\
V2 E2
A /
Vout Eout

Figure 10. Illustration of the searched architecture with the size of 2 on the TSP dataset.

V {in1} V {in0} E_{in0} E {in1}

V Max(+E {inl1})

o o

E_Sub(+V {in0}) | E1

“Mean(+E {in0}) \V Mean(+E {in0}) E Sub(+V1) 1

E2
V_Mean(+E2) E_Sum(+V2)
V4 E1I E3
E_Sum(+V3)
Vout E4
N
Eout

Figure 11. Illustration of the searched architecture with the size of 4 on the TSP dataset.

Mean(+E _{in0}) Mean(+E _{in0})

/ Std(+E_{in0})

Figure 12. Tllustration of the searched architecture with the size of 8 on the TSP dataset.

V Mean(+E_{in0})

V_Mean(+E_{in0})

V_Std(+E_{in0})

/ Gem3(+E._{in0})

Figure 13. Illustration of the searched architecture with the size of 16 on the TSP dataset.

V_{in0}

V Max(+E_{in0})

V {in0}

Vi

V {in1}

' Max(+E_{in1})

\quem3(+E1)

V2

{

Vout

E {in0}

V Max(+E_{in1})

E {inl}

E1l

E2

{

Eout

E_Sub(+V {in0}) ﬁubﬁv_{inl b
\iSum(wn

E_Sub(+V {inl})

Figure 14. Illustration of the searched architecture with the size of 2 on the CIFAR10 dataset.

V {inl}

" Max(+E1)

V_Gem3(+E2)

V_Max(+E2) V3

" Max(+E3)

Vout

Mo})ﬁaxHE{inl})

V Max(+E_{in0}) | V1

E {in0}

“Max(+E_{inl})

E_Had(+V {in0})

E {in1}

El

“Had(+V1)

E2

E_Sum(+V2/

E Gauss(+V2)

E4

@3)

E3

Eout

MZO}) T{éub(wanl 1)

Sub(+V{in1})

/

Figure 15. Illustration of the searched architecture with the size of 4 on the CIFAR10 dataset.

V. Max(+E_{in0}) /¥ Max(+E_{in1})

“Sub(+V_{in1})

'V Max(+E_{in1})

E_Sum(+V_{in0})

V_Max(+E_{in0}) [E_Sub(+V_{in1})
 Max(+E_{in1})

V_Max(+E_{in1})

Figure 16. Illustration of the searched architecture with the size of 8 on the CIFAR10 dataset.

V Max(+E_{in0}) E_Sub(+V_{in1})

[E_Sum(+V_{in0})

 Max(+E_{in1}) [E_Sub(+V {in1})

IV Max(+E_{in1}) E_Gauss(+V_{in1})

Figure 17. Illustration of the searched architecture with the size of 16 on the CIFAR10 dataset.

V {in1}
V Max(+E _

[
Ve

E Max(+V {in1})

V Max(+E_{in1})

ESum(+V
04

Figure 18. Illustration of the searched architecture with the size of 2 on the ModelNet10 dataset.

E_Max(+V_{in1})

E_Had(+V_{in1})

Figure 19. Illustration of the searched architecture with the size of 4 on the ModelNet10 dataset.

 Gauss(+V_{in1})

V Gem2(+E_(in1h)

E_{in0} —_— ————
e
L] Tl

y
[(+V6)
“
o

Figure 20. Illustration of the searched architecture with the size of 8 on the ModelNet10 dataset.

	. Search Space Details
	. Node-learning Operations
	. Relation-mining Operations
	. Task-based Layer

	. Network Differentiation Details
	. Visualizing Hierarchical Features
	. Searched Architectures

