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1. Qualitative examples

We illustrate qualitative pose estimation examples from
the LINEMOD dataset for OVE6D and LatentFusion [6] in
Figure 1. Note that the ground truth segmentation mask is
used for LatentFusion by following [6], while OVE6D is
evaluated using the predicted segmentation mask provided
by Mask-RCNN [1].

2. Parameter configurations

The granularity of the discretized out-of-plane rotations
(viewpoints) is determined by the parameter N. We conduct
experiments to explore how the ADD(-S) recall is affected
by the number of viewpoints IV, the retrieving number of
viewpoint hypothesis K, and the number of orientation pro-
posal P. By increasing the number (V) of viewpoints, we
reduce the average distance of adjacent viewpoints, which
can result in a higher ADD(-S) recall, as shown in Table
1. In addition, retrieving more viewpoint hypotheses (K)
from the codebook and taking more orientation proposals
(P) could increase the probability of obtaining the correct
pose for the subsequent stages. The experimental results
are presented in Table 2 and Table 3. On the other hand,
a finer discretization of the out-of-plane rotation leads to a
larger memory footprint (more viewpoints), and more ori-
entation proposals consume a longer verification time. We
found N = 4000, K = 50, and P = 5 to be a good trade-
off between the accuracy and the efficiency.

3. Viewpoint codebook construction

In the main paper, we use the object 3D mesh model to
construct the object viewpoint codebook (using synthesized
data) to avoid the expensive 6D pose annotation. Neverthe-
less, the object viewpoint codebook can also be built using
real-world training data (with the ground truth 6D object
poses). To this end, we conduct additional experiments on
the LINEMOD dataset where we build the viewpoint code-
book using the real annotated images instead of the mesh
model. The experimental results are presented in Table 4

Sampling Number (N)
(K=1,P=1) 1k 2k 4k 8k 16k
AAVD(°) 6.1 43 3.1 2.1 1.5
ADDC(-S)(%) 74.1 75.0 757 758 76.6

Table 1. The average ADD(-S) recalls on the LINEMOD dataset
in terms of the varying number of viewpoint sampling. "AAVD”
in short for the Average Adjacent Viewpoint Distance.

Retrieving Number (K)
(N=4k,P=1) 1 10 30 50 100
ADD(-S)(%) 757 80.7 81.5 81.6 81.5

Table 2. The average ADD(-S) recalls on the LINEMOD dataset
in terms of the varying number of viewpoint retrieval.

Proposal Number (P)
(N = 4k, K = 50) 1 3 5 10 20
ADD(-S)(%) 81.6 850 86.1 87.0 87.2

Table 3. The average ADD(-S) recalls on the LINEMOD dataset
in terms of the varying number of orientation proposal.

in terms of the average ADD(-S) recall. We can observe a
slight gain in the results compared to those obtained with
the synthetic data. We attribute this to the alleviation of the
domain gap between the object viewpoint codebook and the
observed depth images.

4. Orientation decomposition

Our method decouples the complete 3D orientation into
two components, i.e., the out-of-plane rotation (viewpoint)
and the in-plane rotation around the camera optical axis.
Here, we provide more details about the factorization.

The object 3D orientation matrix R can be factorized
into three separate rotations around each axis (x, y and
z-axis) with respect to the object coordinate system. i.e.
R = R.R/R,, where R, Ry and R, are the rotations
around the z, y and x axis, respectively. Furthermore, we re-
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Figure 1. Qualitative evaluation on LineMOD. We show the qualitative results of LatentFusion [6] (first row) and OVE6D (second row).
Red and blue 3D bounding boxes indicate the ground truth and the estimated poses, respectively.

Re]f)e;f;’ce Method Input1CP _AS‘])D(]%)
LatentFusion(GT) [6] | RGBD 87.1
Mutli-View OVE6D(GT) D 97.0
With Pose OVE6D(GT) D v 99.4
Annotation | OVE6D(MRCNN) D 86.5
OVEG6D(MRCNN) D v 94.0
Object OVE6D(GT) D 96.4
Mach OVE6D(GT) D v 98.7
Model OVEG6D(MRCNN) D 86.1
OVEG6D(MRCNN) D v 92.4

Table 4. Evaluation on LINEMOD. We report the average ADD(-
S) recall. ICP refinement is performed for all pose proposals be-
fore pose selection. MRCNN and GT indicate using the masks
provided by Mask-RCNN and the ground truth, respectively.

formulate the 3D orientation matrix as R = RgR.,, where
Ry = R, is the in-plane rotation around the camera op-
tical axis (z axis) and R, = R R, is the out-of-plane
rotation. In the case of isometric orthographic projection,
the histograms of object depth values is mainly determined
by the out-of-plane rotation of the object, as illustrated in
Figure 2. To this end, we uniformly discretize the out-of-
plane rotation R, € R®*3 as a finite set of object view-
points {R]}¥, (N 4000 in the main paper) and en-
code the object viewpoints into latent vectors. These latent
viewpoint embeddings are invariant to the in-plane rotation
around the camera optical axis. Moreover, the in-plane ro-
tation Ry € R3*3 is formulated as,

cosf) —sinf 0
Ry = |sinf cosf O €))
0 0 1

where 6 is the rotating angle around the camera optical axis.
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Figure 2. In the first row, we show the histograms of object depth
values observed from two different viewpoints A (R3) and B
(R ). In the second row, we show the histograms of object depth
values from the same viewpoint A (R5 and ReRY). Ry is an
in-plane rotation around the camera optical axis. We can observe
that the (asymmetric) object depth images rendered from different
viewpoints result in different distributions. In contrast, the depth
images from the same viewpoint but with different in-plane rota-
tions share similar distributions.

Equivalently, we construct the in-plane rotation matrix Ry
as,

9 =Yy 0
Rop= |02 U1 O (@)
0 0 1

where 91,1, are scalar values of a unit vector © € R?
predicted by the in-plane orientation regression network of
OVEG6D. As presented in Figure 3, we show some inter-
mediate results Py, without the regressed in-plane rota-
tion and final complete 6D pose results P f,4; (With the
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Figure 3. Qualitative evaluation on T-LESS. In the first row, we show the intermediate results P;cmp (without the in-plane orientation
regression). In the second row, we show the final complete 6D poses P f;,q; (With the in-plane orientation regression). Red, and
blue 3D bounding boxes represent the ground truth, the intermediate and the final 6D poses, respectively.

Pose Evaluation on REAL275

Retrieval on Occluded LINEMOD
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Figure 4. L: Results for REAL275 (18 objects from 6 categories) using category or instance-level IDs. In category case, we retrieve from
all object codebooks belonging to the selected category. R: Viewpoint retrieval results with respect to the occlusion size.

estimated in-plane rotation), i.e., Picmp = [R]|t] and
Piina = [RIR][t], where R] € R**3 is the rotation
matrix of the retrieved object viewpoint, t € R? is the es-
timated object 3D translation, and Rf is the estimated in-
plane rotation for the retrieved viewpoint.

5. Data augmentation

We apply the commonly used training data augmenta-
tion techniques to improve the generalization of our model.
In particular, we first downscale the synthetic depth im-
age with a random factor and then augment the downscaled
depth image (see Tab. 5) before re-scaling it to the original
size. The imgaug [3] library is employed to achieve this.

6. Object category-level / instance-level ID

We follow the standard practice and use the class labels
predicted by the off-the-shelf Mask-RCNN detector as the
object IDs. The IDs are used to index the viewpoint code-
book and, therefore, a wrong or non-optimal ID could dam-

age the performance as an inadequate codebook would be
used in the retrieval. To gain further insight, we evaluated
OVEGD using the category-level 6D dataset REAL275 [8].
The results (Fig. 4 left) show that OVE6D achieves com-
parable performance using object category IDs instead of
the object instance IDs. We believe this is due to the fact
that OVEGD is a shape-based method and objects within a
category often share similar shapes.

7. Sensitivity to occlusion

We performed an additional experiment to examine
the viewpoint retrieval performance on the Occluded
LINEMOD dataset using ground truth segmentation masks
in terms of varying percentage of object visibility. The re-
sults in Figure 4 right indicate that the performance remains
almost intact up to 30 % occlusion and declines smoothly
after that.



Technique Parameter Description
Rescale 0.2 ~ 0.8 | Downscale the original image with a random ratio and then upscale to the original size.
LaplaceNoise 0.0 ~ 0.01 Add the Laplace noise to the downscaled image with a random deviation.
Cutout 0.01 ~ 0.1 Cutout rectangular area from the downscaled image with a random area ratio.
GaussianBlur 0.0~ 1.5 Apply random Guassian blurring on the downscaled image.
RandomOcclusion 0.2 Apply a random square or circle occlusion mask on the downscaled image.

Table 5. Data augmentation techniques and parameters applied on the training data.
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Object Viewpoint Encoder

Figure 5. Network structure of the proposed object viewpoint encoder.

8. Structure of the object viewpoint encoder

Figure 5 illustrates the network architecture of the pro-
posed object viewpoint encoder invariant to the in-plane ro-
tation around the camera optical axis. Every convolution
layer (3 x 3 / s where s denoting stride) is followed by the
batch normalization (BN) and ReLU activation layers. Be-
sides, skip connections are added between the feature maps
with the same dimensionality.

9. Training details of Mask-RCNN

We employ Mask-RCNN [1] from Detectron2 [9] with
the backbone ResNet50-FPN [4] to predict the segmenation
masks for the objects in the LINEMOD and LINEMOD-
Occlusion datasets. We use the physically-based rendered
(PBR) images provided by BOP Challenge 2020 [2] to train
the network.

Specifically, we apply two steps to finetune the Mask-
RCNN to overcome the domain gap between the real and
synthetic images. In the first step, we freeze the backbone
of Mask-RCNN initialized with the pretrained weights (on
MSCOCO dataset [5]) and train 50k iterations on the train-
ing data using the default WarmupMultiStepLR learning
schedule with the learning rate [» = 0.001, decayed by 10 at
the iteration steps 30k and 40k, respectively. In the second
step, we unfreeze the backbone and separately train addi-
tional 50k iterations for the 13 objects of LINEMOD dataset

as well as 50k iterations for the 8 objects of LINEMOD-
Occlusion dataset using the CosineAnnealingLR learning
schedule with the learning rate [ = 0.001. While for the
TLESS dataset we directly employ the segmentation results
provided by Multi-Path Encoder [7] for a fair comparison.
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