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1. Code

The github page: https : / / github . com /
ybarancan/TopologicalLaneGraph

2. Theory

2.1. Assumptions

In this subsection, we provide the additional assumptions
we make on top of the ones listed in the main paper.

A curve cannot appear more than once in a minimal cy-
cle. This holds because the divergence and convergence
of the lanes result in centerlines with different identities.

Direction assumption. Let the direction of a minimal cy-
cle MCi be defined as D(MCi) ∈ {0, 1}, i.e. 0=clock-
wise and 1= counter-clockwise. It induces an ordering of
the segments in the minimal cycle relative to an intersection
point P in the cycle such that ui > uj for any two segment
ui and uj in the minimal cycle if ui appears later than uj

when traversing the cycle starting from P in the direction
D(MCi). Similarly an intersection point pi > pj if pi ap-
pears later than pj .

Consider two minimal cycles MCi and MCj where
at least one curve Un appears in both cycles. The seg-
ment of Un in MCi is un and the segment in MCj is u′

n.
Since a curve is continuous there is a path connecting un

to u′
n such that it only consists of Un. Let this path be

V G(un) = V G(u′
n) and the intersection point that this path

intersects MCi be PP (un) and the point it intersects in
MCj be PP (u′

n). The other intersection points that define
their respective segments is K(un) and K(u′

n) respectively.
We define that two minimal cycles are neighbors if they

share at least one intersection point. Based on this, we
have the following property (direction property): Let P =
PP (un) and D(MCi) be the direction from PP (un) to
K(un) through un. Then D(MCj) ̸= D(MCi) and there
exists a path from K(un) to PP (u′

n) entirely on two mini-
mal cycles and following the direction of the minimal cycle

it is in such that it does not intersect Un except at K(un)
and PP (u′

n). If MCi and MCj are not neighbors, then
the path can teleport to MCj at any intersection point other
than PP (u′

n) or K(u′
n).

For minimal cycles with shared seg-
ments or no neighborhood at all, this means:
∃ (D(MCi), D(MCj)) | D(MCi) ̸=
D(MCj) & ∀ PP (un) ∈ {Un ∩ MCi},∀K(un) ∈
{Un ∩MCi} ; PP (un)≶K(un) =⇒ PP (u′

n)≶K(′n).
This means there exists a tuple of opposing directions such
that for all the shared curves in both minimal cycles, if
the port point of the curve in a cycle appears later/earlier
than its corresponding non-port point, the same order has
to be preserved in the other cycle. Note that, this holds
for all reference points that the directions are defined on.
Moreover, negation of both directions does not affect the
condition. Therefore, for any arbitrarily assigned D(MCi),
D(MCj) such that D(MCi) ̸= D(MCj) has to support
this condition. In Fig 1 subfigure i-a, we focus on shared
curve C1 in minimal cycles A and C. These minimal cycles
are not neighbors. The port point of C1 in A, PP (c1), is
the blue dot and the port point in C, PP (c′1), is the red dot.
Thus, the path should be from green dot , K(c1), to red
dot, PP (c′1). The path is shown with green arrows while
the directions of the minimal cycles are shown by the black
arrows surrounding the letters.

If two minimal cycles share intersection points but no
segments, the condition is trivially satisfied for the curves
at these intersection points since PP (u′

n) = PP (un) and
the path is simply either of the minimal cycles. In Fig 1
subfigure i-b, this case is shown. The port point of C3 in
D, PP (c3), is the same point as PP (c′3) and represented
by the red dot. While the green dots represent the K(c′3)
in E and K(c3) in D. The green arrows in D show the path
where the beginning point is K(c3). The arrow in E shows
the path when the beginning point is K(c′3). In both cases,
the entire paths are in either of the minimal cycles, hence
obeying the assumption.

This assumption is suitable for our case since the lanes
tend to have limited curvature. Therefore, for a minimal
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cycle that violates this assumption, the curves need to have
significantly varying curvatures. An example with two min-
imal cycles with same minimal covers violating direction
assumption is given in Fig. 2.

Accessibility assumption. This assumption states that for
all pairs of minimal cycles, it is possible to draw two artifi-
cial curves such that the curves start at different intersection
points on one cycle and end on different intersection points
on the other cycle. The curves cannot intersect and the re-
sulting area bounded by the two curves and two minimal
cycles is not intersected by any other curves that are in both
of the minimal cycles except on the cycles. In other words,
pick two minimal cycles and remove any curve that does not
appear in any of those two cycles. Then, if a curve appears
in only one of the cycles, only keep the segment of the curve
that is in one of the considered minimal cycles. If a curve
appears in both cycles, keep its segments in both cycles as
well as its V G. In the remaining structure it is possible to
draw two paths from two distinct intersection points on one
cycle to two distinct intersection points on the other cycle
such that these two paths do not intersect and no curve in-
tersects the area bounded by the these two artificial curves
and the minimal cycles. This property is trivially satisfied
by the minimal cycles that share a segment since the two
endpoints of a shared segment serve as two distinct points
on both cycles.

We show some example cases for this assumption in Fig
1 subfigure ii. In a) we see the complete lane graph. In
b) we show the mentioned area with shaded region when
the minmal cycles A and D are selected. Since these cycles
share an intersection point, it can act as one of the two paths
needed to enclose the area. The other path is from green
curve to blue curve. In c), we see the case if we focus on
minimal cycles A and C. Since the gray curve is not in any
of the minimal cycles in focus, we simply ignore it. More-
over, since red and blue curves only appear in one of the
cycles, we ignore their segments that are not in the minimal
cycles A and C. However, black and green curves appear
in both cycles, thus all of their segments are included. The
proposed area is the shaded region that satisfies the assump-
tion.

This assumption is suitable for our case since merging
or divergence of lanes are represented with different road
segments that correspond to different curves in our formu-
lation. This assumption’s underlying intuition is that curves
are short and limited in their change in curvature. .

Assumption 1. Any two curves can intersect at most once.

Assumption 2. No curve can intersect with itself.

Assumption 3. No curve is floating, i.e. every curve is con-
nected (hence intersecting) with another curve in its start
and endpoints.

Assumption 4. Curves can appear in one minimal cycle at
most once.

Assumption 5. Direction assumption

Assumption 6. Accessibility assumption

Lemma 2.1. A minimal closed polycurve (minimal cycle)
MC is uniquely identified by its minimal cover B

Proof. Assume there is more than one minimal cycles de-
fined by the same minimal cover and let the first minimal
cycle be MC1 with D(MC1) and the second MC2 with
D(MC2). There are two scenarios: the cycles share at least
one segment or not. Let’s start with the former case.

For proving the shared segment case of the lemma, let
D(MC1) ̸= D(MC2). Pick the intersection point where
the last shared segment ends (end defined by D(MC1))
as the reference point. Segments u0, ..., uN refer to the
segments other than the shared ones in MC1 with the or-
der induced by the reference point and D(MC1). The
curves these segments belong to are U0, ..., UN . Similarly,
w0, ..., wM are the segments in MC2 with the same refer-
ence point but D(MC2) with the curves W0, ...,WM . Note
that this means u0 and w0 are neighbors as well as uN and
wM . Assume W0 ̸= U0 and Wj = U0 where j > 1
since W0 and U0 already intersect. We begin by deciding
whether PP (u0) > K(u0) or not. Let PP (u0) > K(u0).
From the Assumption 5, if V G(u0) follows D(MC1),
V G(u0) covers the space around u0, ...uN , wM , ...u′

0 and
otherwise u0, w0, ...u

′
0. That is, since PP (u0) > K(u0),

PP (u′
0) > K(u′

0). In both cases, V G(w0) has to in-
tersect with V G(u0) to connect W0 with MC1. This is
true because MC1 and MC2 are minimal cycles and thus,
no path can pass through these cycles. See Fig 3 for vi-
sualization. Since W0 and U0 are neighbors, intersection
of V G(w0) and V G(u0) would mean W0 and U0 inter-
secting twice, thus violating Assumption 1. Therefore,
PP (u0) < K(u0). In this case, PP (u0) = PP (w0) to
avoid intersection twice. This means they share the port
points. Moreover, since a curve cannot appear more than
once in a minimal cycle (Assumption 4), we know that
N = M .

Statement 1: Consider two segments ui and ui+1

in MC1. If they do not share a port point, u′
i+1 > u′

i.
The reason is V G(ui) either covers [ui, ..., u0, w0, ..., u

′
i]

or [ui, ..., u|U |−1, w|W |−1, ..., u
′
i] based on Assumption 5.

In either case, V G(ui+1) cannot reach [ui, ..., w0, ..., u
′
i],

without intersecting V G(ui) since the area in MC1 and
MC2 cannot be intersected because they are minimal cy-
cles. Note that this holds if MC1 and MC2 share at least
one segment.

Now consider u1; We know that u0 and u1 do not a share
port point because u0 already has a port point with its inter-



Figure 1. i) The direction property for 2 most common types of minimal cycles. a) We consider cycles A and C with focus on curve C1.
Green dot represents K(C1), red dot represents PP (C′

1) and blue dot is PP (C1). The green arrows show the path from green dot to
red dot, teleporting from A to C over B. In b), we show how the shared intersection point trivially satisfies the property. We focus on C3

where green dots show K(C3) and K(C′
3). In this example, PP (C′

3) = PP (C3), thus red and blue dots coincide and shown in purple.
ii) Accessibility property and the resulting areas (shaded) for 2 pairs of minimal cycles (A-D) and (A-C). For A-D, the shared intersection
point acts as the first artificial path.

Figure 2. The simplest counter example with shared segments if
direction assumption is violated. Obviously, it is very unlikely that
such a structure would occur in a lane graph. The orange curve
(curve 4) and blue curve (curve 1) violate the assumption.

section with w0. Having two port points would mean U0 it-
self is a cycle which is not allowed by Assumption 2. From
Statement 1, we know that u′

1 > u′
0. If PP (u1) > K(u1),

PP (u′
1) > K(u′

1). Therefore, u′
1 − 1 (the neighbor of

u′
1 that appears just before u′

1) cannot share a port point
with u′

1. This means from Statement 1, (u′
1 − 1)′ has to ap-

pear before u1. However, only u0 appears before u1 and U0

and U1 cannot be neighbors in MC2 since they are already
neighbors in MC1. Therefore, we reach the conclusion that
PP (u1) < K(u1).

Since PP (u1) < K(u1), U2 has to appear after U1.
With a similar argument as U1, PP (u2) > K(u2) is im-
possible because it would require its neighbor with a lower
order in MC2 to either be U0 or U1 to avoid intersecting
V G(u2) twice. This means PP (u2) < K(u2). Iteratively
applying this argument, we reach that u′

N > u′
N−1 > ... >

u′
1 > u′

0. This means the same order has to be preserved
which indicates neighbors in MC1 are also neighbors in
MC2 violating the rule of at most one intersection between
any two curves.

Now let W0 = U0. The same argument carries over.
Simply remove U0 from U and W0 from W and apply the
same procedure as the case W0 ̸= U0.

No shared segment. We know that there exists an area
between two cycles such that no shared curves intersect
from Assumption 6. Since MC1 and MC2 have the same
list of curves, all curves are shared. Therefore, no curve
in either MC1 or MC2 intersects this area. This implies,
MC1 and MC2 can be essentially considered as neigh-
bors. We can apply the same arguments as used in case
with shared segment. For this, consider the area that no
curve can intersect (Assumption 6) and the part of MC1

and MC2 it intersects. Let the curve it intersects on MC1

be U0 and correspondingly W0 in MC2. Moreover, let the
intersection region of this artificial curve and MC1 be an
artificial segment a and correspondingly a′ in MC2 with
this artificial curve being A. We know PP (u0) ≯ a
from the shared segment case. The reason being u′

0 − 1
would be completely cut off from MC1 by V G(U0) and
A. Thus, PP (u0) < a. Similar to the shared segment
case, this means u′

1 appears after u′
0 in MC2. Moreover,

PP (u1) > K(u1) would imply that u′
1 − 1 would be com-

pletely cut-off from MC1. Therefore PP (u1) < K(u1),
which implies u′

2 appears after u′
1. The same iterative argu-

ment shows that u′
N > u′

N−1 > ... > u′
1 > u′

0.

Lemma 2.2. Let a set of curves C1 and the induced inter-
section orders I1 form the structure T1 = (C2, I2). Apply-
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Figure 3. The illustration of the proof for Lemma 1.1. Due to the
direction assumption, curve 0 blocks curve 4 and curve 2 access-
ing the upper minimal cycle (MC1 in the proof). This situation
happens regardless of the route V G(U0) takes (here it is the pur-
ple path connecting the curve 0 between two minimal cycles).

ing any deformations on the curves in C1 (but no removal
or addition of curves) and the resulting induced intersec-
tion orders create T2 = (C2, I2). I1 = I2 ⇐⇒ MC1 ==
MC2. In other words, the global intersection orders of the
two structures are same if and only if the set of minimal
cycles are same.

Proof. Let’s begin by proving the forward statement. Con-
sider a MC in G1 and the set of intersection points and the
curves creating this MC. Since G2 has the same I as G1, a
closed polycurve CC in G2 can be formed by the same set
of intersection points and curves. Assume some curve Cp

intersects the area of closed polycurve CC and hence CC
is not a minimal cycle. We know that no curve is floating
from Assumption 3 so Cp has to intersect some other curve
either in CC or on CC. Either way, this means alteration in
I of at least 2 curves.

For the opposite direction, consider a pair of identical
MCs (one in G1 and one in G2). The cycles are formed
by the same curve segments by definition. The curve seg-
ments are, in turn, defined by the intersection points on
their respective curves. Since we know no curve is removed
or added, the identical minimal cycles in the structures are
formed by the identical intersection points. Since minimal
cycles create a partition of the space, each curve segment
has to appear in at least one minimal cycle. Thus, the set of
intersection points I1 = I2.

3. Architectures
Here, we provide some details regarding the architec-

tures.

3.1. MC-Polygon-RNN (Ours/PRNN)

Polygon-RNN produces 2N feature maps where N is the
number of initial points (which is the same as the number
of centerlines). Since we use three control points, Polygon-
RNN does two iterations to produce the rest of the control
points. The N final feature maps are then passed through an
MLP to produce N feature vectors. In the transformer NLP
setting, these vectors correspond to the transformer encoder
output which is the processed input sequence. Thus, in the
transformer decoder, cycle queries attend to all the center-
lines to produce the output.

3.2. TR-RNN

In order to investigate the feasibility of estimating the
order of intersections directly, we opted for an architecture
that combines transformers and RNNs. Specifically, on top
of the base transformer model, we use an RNN. The input
to the RNN is Vc, i.e. the processed query vectors. Each
processed query vector is processed by the RNN indepen-
dently. Let the RNN input vector be Vc(i), i.e. ith processed
query vector. We refer to it as the reference curve. At each
time step t of the RNN, the output is a probability distri-
bution over the estimated curves and the boundary curves,
as well as an end token. Therefore, at each time step t, the
output is N +K+1 dimensional, with N estimated curves,
K boundary curves and one end token. Whenever the RNN
outputs the end token, we gather the estimates at the previ-
ous steps. These outputs form the ordered sequence of in-
tersections for the reference curve. Since the query vectors
are processed jointly by the transformer, Vc carries informa-
tion about the whereabouts of the other curves as well. We
measure the performance of this RNN by using the same
order metric ’I-Order’ on the RNN estimates.

4. Metrics
We introduced 2 new metrics that measure topological

structure accuracy. Here we present additional explanations
on the calculation and the justifications for these metrics.

4.1. Minimal Cycle Minimal Cover

In order measure the performance of the methods on
estimating the minimal cycles, we introduce a precision-
recall based metric. The metric operates on min-matched
set of curves. Similar to the connectivity metric, let R(i)
be the index of the target that the ith estimation is matched
to and S(n) be the set of indices of estimations that are
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Figure 5. TR-RNN has an RNN operating on the transformer outputs. For each transformer processed curve query vector, it outputs a
sequence of fixed sized (N +K dimensional) vectors. Each such vector indicate the probability distribution over the estimated curves that
the current reference query intersects in that order. In the figure, we show the reference query with white curve and the selected intersecting
curve at each time step with red. This sequence is a direct estimation of the intersection order.

matched to target n. Now let the GT minimal cycles be
MCGT ∈ [0, 1]M

′×N ′+K while MCEst ∈ [0, 1]M×N+K .
We will form true positive (TP), false positive (FP) and false
negative (FN) matrices of size M ′ ×M ×N ′ +K.

TP(i, j, k) = 1 if MCGT (i, k) = 1 & ∃ n | ((R(n) =
k) & (MCEst(j, n) = 1)). In words, TP(i, j, k) is 1 if ith
true minimal cycle includes kth true curve and jth estimated
cycle has a curve in it that is matched to kth true curve in
matching.

FN(i, j, k) = 1 if MCGT (i, k) = 1 & ∄ n | ((R(n) =
k) & (MCEst(j, n) = 1)).

FP(i, j, k) = 1 if MCGT (i, k) = 0 & ∃ n | ((R(n) =
k) & (MCEst(j, n) = 1)).

We sum up the TP, FP and FN matrices along the last di-
mension to obtain TP’, FP’ and FN’. Then H ∈ RM ′×M =

FN ′ + FP ′. We run Hungarian matching on this matrix
and we simply select the resulting indices from TP’, FP’
and FN’ and take the sum to get the statistics. If M ′ > M ,
we consider all the positive entries in unmatched true mini-
mal cycles as false negative.

H-GT-F and H-EST-F . MC-F measures the minimal cy-
cle accuracy of the resulting lane graph. However, we also
want to measure the performance of the minimal cycle de-
tection by the sub-network. Therefore, we apply the same
procedure described above on the estimates of the MC de-
tection sub-network. H-GT-F measures the F-score of the
detection subnetwork’s estimates compared to the true min-
imal cycles. This uses the same procedure as MC-F. There-
fore, this measures how good the detection head is in de-



tecting the minimal cycles that should be created in the es-
timated lane graph. H-EST-F measures the minimal cycle
detection network’s performance in detecting the minimal
cycles that are induced by the estimated lane graph. Thus,
it shows how good the detection network is in detecting
the minimal cycles that are created in the estimated lane
graph. In summary, MC-F is a similarity measure between
induced lane graph and true lane graph, H-GT-F is between
detection estimates and true lane graph and H-EST-F is
between detection estimates and induced lane graph. To-
gether, these metrics give a full picture of the performance
of the detection network as well as the whole network in
estimating the lane graph.

4.2. Intersection Order

In order to measure the intersection order, we get the
best match for each true curve. Let M(i) be the index of
the target that the ith estimation is matched to and S(n)
be the set of indices of estimations that are matched to tar-
get n. Then the best match curve for a true curve n is
Rn = argmins L1(Cn, s), s ∈ S(n). For the set of true
curves Cn with |S(n)| > 0, given the matched pairs, we
extract the intersection orders. We similarly extract the in-
tersection orders for the estimated curves that are the best
match for some true curve. Given the set of matched in-
tersection orders we run Levenshtein edit distance and nor-
malize it by the length of intersection order sequence of the
true curve. For the unnmatched true curves, we consider the
distance to be 2 (the normalized distance that would result
from removing all the elements in the estimated sequence
and adding the elements in the true sequence if the esti-
mated sequence is the same length as true sequence). The
I-Order of a frame is then the mean over the normalized edit
distances.

RNN-Order. The procedure explained above in Sec-
tion 4.2 is applied to the outputs of TR-RNN to measure
how accurate the RNN is in estimating the intersection or-
ders. Instead of the orders extracted from the estimated lane
graph, we simply use the RNN outputs.

5. Results
We provided detailed statistical results in the main paper.

Here, we provide more visual results. Visuals confirm the
statistical findings that the proposed formulation provides
improvement in preservation of the topological structure of
the true road network.
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Figure 6. For 3 samples image (above) and the lane graphs and induced minimal cycles (below) in Nuscenes dataset.



PRNN Ours/PRNN PRNN(GT) Ours/PRNN(GT) TR-Base TR-RNN Ours/TR GT

PRNN Ours/PRNN PRNN(GT) Ours/PRNN(GT) TR-Base TR-RNN Ours/TR GT

PRNN Ours/PRNN PRNN(GT) Ours/PRNN(GT) TR-Base TR-RNN Ours/TR GT

a)

b)

c)

Figure 7. For 3 samples image (above) and the lane graphs and induced minimal cycles (below) in Argoverse dataset.
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