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A

A.1 Derivation of Equation (1)

With the assumption that x and θ are independent, the posterior joint distribution p(y, x, θ|D) can be
factorized as follows:

p(y, x, θ|D) = p(y, x|θ,D)p(θ|D)

= p(y|x, θ)p(x|θ,D)p(θ|D)

= p(y|x, θ)︸ ︷︷ ︸
data

p(x|D)︸ ︷︷ ︸
distributional

p(θ|D)︸ ︷︷ ︸
model

(x and θ are independent)

Note that, when constructing a hybrid model, p(x|D) is generally modeled by p(x|θ2) parameterized
by θ2. Therefore, the hybrid model is essentially p(y, x|θ) = p(y|x, θ)p(x|θ) = p(y|x, θ1)p(x|θ2)
where θ = (θ1, θ2).

A.2 Proof of Proposition 3.3

The first half of the theorem is Theorem 3.1.6 of [1]. Thus, we only provide the proof for the second
half of the theorem: if a function φ is L-bi-Lipschitz continuous, then the singular values of its
Jacobian lie in the interval (L−1, L).

Proof. Consider two metric spaces (X , ‖.‖X ) and (H , ‖.‖H ). A function φ : X → H is L-bi-
Lipschitz continuous, which means 1

L ∗ ‖x1 − x2‖X ≤ ‖φ(x1) − φ(x2)‖H ≤ L ∗ ‖x1 − x2‖X ,
∀x1, x2 ∈ X . For simplicity, we use l2-norm ‖.‖2 for both X and H .

Let x1 = x2 + t ∗ s where t ∈ R, s ∈ X , and ‖s‖2 = 1; then we have
1

L
≤ ‖φ(x2 + t ∗ s)− φ(x2)‖2

t
≤ L

When t→ 0, we have
1

L
≤ ‖∂φ(x2)

∂x
s‖2 ≤ L (6)

Let Jφ(x) = ∂φ(x)
∂x , since (6) is true for all x2 ∈ X , we have

1

L
≤ inf

x∈X,‖s‖2=1
‖Jφ(x)s‖2 ≤ ‖Jφ(x)s‖2 ≤ sup

x∈X,‖s‖2=1

‖Jφ(x)s‖2 ≤ L (7)

Now we show that σ1 = infx∈X,‖s‖2=1‖Jφ(x)s‖2 and σr = supx∈X,‖s‖2=1‖Jφ(x)s‖2 where σ1 is
the smallest singular value of Jφ(x) and σr is its largest singular value.

Suppose that, for a fixed x ∈ X , the singular value decomposition of Jφ(x) = U(x)Σ(x)V T (x)
where UT (x)U(x) = I and V T (x)V (x) = I , then we have

sup
‖s‖2=1

‖Jφ(x)s‖2 = sup
‖s‖2=1

‖U(x)Σ(x)V T (x)s‖2 = sup
‖s‖2=1

‖Σ(x)V T (x)s‖2



since U(x) is unitary, that is, ‖U(x)s0‖22 = sT0 UT (x)U(x)s0 = sT0 s0 = ‖s0‖22, for any s0 ∈ X .

Let y = V T (x)s, then we have

sup
‖s‖2=1

‖Σ(x)V T (x)s‖2 = sup
‖y‖2=1

‖Σ(x)y‖2 (8)

since ‖y‖2 = ‖V T (x)s‖2 = ‖s‖2 = 1, as V (x) is unitary.

Let Σ(x) = diag(σ1(x), ..., σr(x)) where σ1(x) is the smallest singular value and σr(x) is the largest
singular value. Next, we solve sup‖y‖2=1‖Σ(x)y‖22 using a Lagrange Multiplier.

L(y, λ) = ‖Σ(x)y‖22 − λ(‖y‖22 − 1) = yTΣT (x)Σ(x)y − λ(yT y − 1)

∂L

∂y
= 2ΣT (x)Σ(x)y − 2λy = 2(ΣT (x)Σ(x)y − λy) = 0

Thus, the maximum (minimum) of ‖Σ(x)y‖22 subjected to ‖y‖2 = 1 is the largest (smallest) eigen-
value of ΣT (x)Σ(x) which is σ2

r(x) (sup‖y‖2=1‖Σ(x)y‖22 = σ2
r(x)). Thus, sup‖s‖2=1‖Jφ(x)s‖2 =

sup‖y‖2=1‖Σ(x)y‖2 = σr(x).

Similarly (replacing sup with inf), we can also prove that inf‖s‖2=1‖Jφ(x)s‖2 = σ1(x). Now let x
vary; then we have

sup
x∈X,‖s‖2=1

‖Jφ(x)s‖2 = sup
x∈X

σr(x) = σr

inf
x∈X,‖s‖2=1

‖Jφ(x)s‖2 = inf
x∈X

σ1(x) = σ1

From Equation (7), we have
1

L
≤ σ1 ≤ ... ≤ σr ≤ L (9)

A.3 Proof of Theorem 3.5

Proof. Consider two measure spaces (X , A , volX ) and (H , H , volH ) whereX = Rn andH = Rm

with m < n. Suppose that function φ : Rn → Rm is L1/m-bi-Lipschitz continuous (L > 1), and
under mild conditions, its Jacobian Jφ(x) is full rank. From Proposition 3.3, the singular values of
Jφ(x) are double-bounded by L1/m and L−1/m:

1

L1/m
≤ σ1 ≤ ... ≤ σm ≤ L1/m (10)

For any measurable (open) set B ∈ A , let B = ∪Bx where Bx are "almost" disjoint closed
cubes, in the sense that only the boundaries of the cubes can overlap. Each Bx is an infinitesi-
mal open cover of point x ∈ X . From Equation (5) we see that, for each Bx, the volume ratio
volH(φ(Bx))/volX(Bx) = dVφ(h)/dx = volJφ =

∏m
i=1 σi. Since each σi(i = 1, ...,m) is double-

bounded by L1/m and L−1/m, their product
∏m
i=1 σi is double-bounded by L and L−1. Thus, we

have
1

L
≤ volH(φ(Bx))

volX(Bx)
=

m∏
i=1

σi ≤ L,∀x ∈ X (11)

We notice that φ(Bx) are also disjoint open sets since φ is bijective. Thus, we have volX(B) =∑
volX(Bx) and volH(φ(B)) =

∑
volH(φ(Bx)). From (11) and Lemma 1, we have

1

L
≤ min

volH(φ(Bx))

volX(Bx)
≤ volH(φ(B))

volX(B)
=

∑
volH(φ(Bx))∑
volX(Bx)

≤ max
volH(φ(Bx))

volX(Bx)
≤ L (12)

Thus, we have 1
L ∗ volX(B) ≤ volH(φ(B)) ≤ L ∗ volX(B),∀B ∈ A .
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Lemma 1 Given two sequences of positive numbers a1, ..., ak and b1, ..., bk,

min
i

ai
bi
≤
∑
i ai∑
i bi
≤ max

i

ai
bi

Proof. Let M = maxi ai/bi. This means that for all i, ai/bi ≤ M , and thus ai ≤ Mbi. Thus, we
have ∑

i

ai ≤
∑
i

Mbi ≤M
∑
i

bi

which is the same as ∑
i ai∑
i bi
≤M = max

i

ai
bi

The other side of the inequality can be obtained similarly.

A.4 Proof of Proposition 3.6

Proof. Consider a residual DNN φ = φd ◦ ... ◦ φ2 ◦ φ1 where φl(x) = x + gl(x) for l = 1, . . . , d.
For simplicity, we use l2-norm ‖.‖2 for both X and H . All gl(x) are β-Lipschitz continuous where
0 < β < 1. Thus, we have ‖gl(x1)− gl(x2)‖2 ≤ β ∗ ‖x1 − x2‖2,∀x1, x2 ∈ X .

We first show that, for all l = 1, . . . , d:

(1− β) ∗ ‖x1 − x2‖2 ≤ ‖φl(x1)− φl(x2)‖2 ≤ (1 + β) ∗ ‖x1 − x2‖2 (13)

We first show the left hand side of (13):

‖x1 − x2‖2 = ‖x1 − x2 + (φl(x1)− φl(x2))− (φl(x1)− φl(x2))‖2
≤ ‖(φl(x2))− x2)− (φl(x1))− x1)‖2 + ‖(φl(x1)− φl(x2)‖2
≤ ‖(gl(x2)− gl(x1)‖2 + ‖(φl(x1)− φl(x2)‖2
≤ β ∗ ‖x2 − x1‖2 + ‖(φl(x1)− φl(x2)‖2

Thus, we obtain:
(1− β) ∗ ‖x1 − x2‖2 ≤ ‖φl(x1)− φl(x2)‖2 (14)

Next, we show the right hand side of (13):

‖φl(x1)− φl(x2)‖2 = ‖x1 + gl(x2)− (x2 + gl(x1))‖2
≤ ‖x1 − x2‖2 + ‖gl(x1)− gl(x2)‖2
≤ (1 + β) ∗ ‖x1 − x2‖2

(15)

Combining (14) and (15), we prove (13).

Since φ = φd ◦ ... ◦ φ2 ◦ φ1, we have

(1− β)d ∗ ‖x1 − x2‖2 ≤ ‖φ(x1)− φ(x2)‖2 ≤ (1 + β)d ∗ ‖x1 − x2‖2 (16)

Let L = max{(1− β)−d, (1 + β)d}, we have

1

L
∗ ‖x1 − x2‖2 ≤ ‖φ(x1)− φ(x2)‖2 ≤ L ∗ ‖x1 − x2‖2

A.5 Proof of Corollary 3.7

Proof. This proof is informal. We only provide an approximate analysis of the true bi-Lipschitz
bound for residual DNNs in the real world. This can only be done under some mild assumptions. To
start with, it is helpful to consider an equivalent definition of the bi-Lipschitz continuous condition
in our following analysis. In Definition 3.2 of our paper, let ‖x1 − x2‖X → 0, we get the following
conclusion: a function φ : X → H is L-bi-Lipschitz continuous if and only if there exists a constant
L ≥ 1, s.t. the local distance ratio ‖dφ(x)‖

‖dx‖ (norm of the local derivative) lies in the interval ( 1
L , L) for

any x ∈ X .
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Suppose that our model is a DNN φ composed of d residual blocks, each of which is β-Lipschitz
continuous where 0 < β < 1. Following Proposition 3.6, φ is guaranteed to be at least L-bi-Lipschitz
continuous where L = max{(1− β)−d, (1 + β)d}. Without loss of generality, let L = (1 + β)d. In
practice, however, it is possible to obtain a much tighter bi-Lipschitz bound (much smaller than the
value of L = (1 + β)d) by considering the entire DNN as a whole rather than each layer in isolation.
Specifically, in order to reach the bi-Lipschitz constant L = (1 + β)d, all d residual blocks must
reach the bi-Lipschitz constant (1 + β) at the same time, which means that all local distance ratios
‖dφ(x)‖
‖dx‖ of each block reach their maximum values (1 + β) at the same location x. For a flexible

DNN, this is not likely to happen in practice. What happens, in general, is that all local distance ratios
‖dφ(x)‖
‖dx‖ of the blocks approximately lie uniformly in the interval ( 1

1+β , 1 + β) at a particular point x.

To be more specific, let φ = φd ◦ ... ◦ φ2 ◦ φ1 and hi = φi ◦ ... ◦ φ2 ◦ φ1, where φi(x) = x + gi(x) is
the i-th residual block and i = 1, . . . , d. Since each gi is β-Lipschitz continuous, each φi is (1 + β)-
bi-Lipschitz continuous, and thus the distance ratio ‖dφi(hi−1(x))‖

‖dhi−1(x)‖ lies in the interval ( 1
1+β , 1 + β).

For simplicity of analysis, we assume that all d distance ratios ‖dφi(hi−1(x))‖
‖dhi−1(x)‖ (at a particular point

x) of the d residual blocks are approximately statistically independent and all lie uniformly in the
interval ( 1

1+β , 1 + β). This assumption is generally valid for the following reason: DNNs are
universal approximators. Thus, each layer’s shape should be diverse in order to be flexible enough to
approximate complicated functions. Therefore, the norms of the local derivatives (distance ratios) of
each layer should be diverse as well (after the DNN φ is trained to approximate a highly complex
function). Therefore, it is reasonable to assume that the distance ratios are approximately statistically
independent (in other words, the distance ratios should not be the same or even close at one particular
location x). Note that statistical independence is different from independence (e.g., pseudo-random
number generators).

Suppose, for each i, that ‖dφi(hi−1(x))‖
‖dhi−1(x)‖ reaches its maximum value (1 + β) at x = x∗i , the probability

that x∗1 = x∗2 = ... = x∗d approaches to zero when d is large. Therefore, it is not very likely that
the true bi-Lipschitz constant of φ reaches the value L = (1 + β)d. Actually, the expectation of
the true bi-Lipschitz constant L should be E[L] = 0.5d(1 + β + 1

1+β )d with standard deviation

D[L] =
√

1
12

d
(1 + β − 1

1+β )2d (d independent uniform distributions). Furthermore, following
Theorem 3.5, if the data x takes values on an m-manifold, we would expect our model φ to be
0.5md(1 + β + 1

1+β )md-measure-preserving (after it is trained on x).

A.6 More Related Work

Uncertainty Factorization In the literature of uncertainty factorization, the main goal is to factorize
the model into two or three types of uncertainty so that we can directly access the uncertainty
information once we learn the model. A good uncertainty factorization should be general (widely
useful in various models) and semantically accurate (the results should be consistent with the
definitions presented in Section 2.1 in our paper).

The existing literature [2–4] focuses on factorizing the posterior predictive distribution p(y|x, θ,D).
One shortcoming of this approach is that the proposed factorizations are often complicated and
not general, only suitable for specific models. Furthermore, many factorizations fail to capture the
semantics of different sources of uncertainty correctly. For example, [2] proposes to factorize the
posterior predictive distribution as P (ωc|x∗, D) =

∫ ∫
p(ωc|µ)p(µ|x∗, θ)p(θ|D)dµ dθ where µ is

an auxiliary variable the authors introduce. According to the paper, p(ωc|µ) is the data uncertainty,
p(µ|x∗, θ) is the distributional uncertainty, and p(θ|D) is the model uncertainty. There are two
shortcomings of this factorization. (1) It is not general since the authors introduce a new variable µ,
which means that if we want to model the distributional uncertainty or the model uncertainty, we have
to incorporate the variable µ into our model design. (2) It is not semantically accurate. For example,
the distributional uncertainty defined by p(µ|x∗, θ) does not capture the discrepancy between x∗ and
D. The data uncertainty defined by p(ωc|µ) is solely determined by a model variable µ. Thus, it
cannot capture the inherent randomness of the data when x varies. The uncertainty factorization
introduced by [4] is not general since it is only applicable in their proposed Bayesian Nonparametric
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Ensemble (BNE) models. The uncertainty factorization proposed by [3] is also not general. It only
works with Bayesian Neural Networks with latent variables (BNN+LV), where latent variables z
come from Gaussian distributions. Furthermore, this uncertainty factorization is very complicated.

To our knowledge, this is the first work to attempt to factorize the posterior joint distribution
p(y|x, θ,D). Our uncertainty factorization is quite neat while remaining semantically accurate. It
is also quite general since it does not introduce auxiliary variables or assume a specific form of the
model. Therefore, this uncertainty factorization can be used in a wide variety of models.

B Experiment Details

Training In all the vision experiments, the initial learning rate is set to 0.05, which drops by 0.2 at
60, 120, and 160 epochs. We use SGD with Nesterov momentum, and the batch size is set to 64,
momentum to 0.9, and weight decay to 5e-4. We train all the models for 200 epochs. We only apply
the standard data augmentation (horizontal flips and random cropping with 4x4 padding). Following
[5], we set power iteration to 1 and SN upper bound c to 6. For NF, we use the same architecture as
[6] except that the hidden dimension of the residual blocks is set to 640 rather than 256. We find that
a larger weight decay (16e-4) for the NF weights leads to better OoD detection performance.

In the text experiments, we pre-tokenize the sentences using the standard XLNet tokenizer1 with a
maximum sequence length of 32 and initialize the model from the official XLNetBase checkpoint2.
For fine-tuning, we use AdamW [7] optimizer with weight decay rate 1e-6, and the batch size is set
to 256. The initial learning rate is set to 3e-6, which drops by 0.5 at 60, 120, and 160 epochs. We
train the models for 200 epochs. For SN, following [5], we set power iteration to 1, and SN upper
bound c to 0.95, and only apply it to the pooler dense layer of the classification token. For NF, the
hidden dimension of the residual blocks is set to 768.

All models are implemented in Pytorch and are trained on a V-100 GPU.

Evaluation Metrics For the vanilla DNN, Deep Ensembles, and SNGP, we compute their OoD uncer-
tainty scores using the maximum value of the logits. We compute the kernel distance for DUQ and NF
probability for DHM, respectively. To evaluate the model’s calibration performance on ID data, we
use the empirical estimate of Expected Calibration Error ECE =

∑M
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣

[8] where M is set to 15 in this paper, reflecting the difference in the model’s predictive accuracy and
its confidence. To evaluate the model’s OoD detection performance, we use Area Under Receiver
Operating Characteristic (AUROC) and Area Under Precision-Recall (AUPR). A ROC curve is
plotted with the TPR against the FPR, while a PR curve plots the relationship between precision and
recall. Each point on a ROC curve or a PR curve represents one possible classifier (threshold). The
AUROC and AUPR are holistic metrics that summarize the performance of detectors at all possible
thresholds. The value of AUROC and AUPR vary between 0 and 1, with an uninformative detector
yielding 0.5. An excellent OoD detector has an AUROC or AUPR value near 1, which means that the
model is well capable of distinguishing between ID and OoD classes.

Assets The datasets used in this paper include CIFAR-10/100 [9], SVHN [10], TinyImageNet3 [11],
LSUN [12], iSUN [13], and CLINC1504 [14]. They are all open source available and widely used in
various domains and, to our knowledge, do not contain personally identifiable information or offensive
content. We use the official implementations of DUQ 5 [15] and SNGP 6 [5] in our experiments.
Furthermore, our implementation of DHM adapts code from [16] for the NF 7.

C Additional Experiment Results

Additional results are shown in Table 1-3. The results are consistent with the previous experiments.
1https://huggingface.co/transformers/model_doc/xlnet.html (Apache License, Version 2.0)
2https://huggingface.co/transformers/model_doc/xlnet.html (Apache License, Version 2.0)
3https://github.com/rmccorm4/Tiny-Imagenet-200 (MIT License)
4https://github.com/clinc/oos-eval (Creative Commons Public License)
5https://github.com/y0ast/deterministic-uncertainty-quantification (MIT License)
6https://github.com/google/uncertainty-baselines/tree/master/baselines (Apache Li-

cense, Version 2.0)
7https://github.com/rtqichen/residual-flows (MIT License)
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(a) CIFAR-10 (b) CIFAR-100

Figure 1: (a) and (b) show the histograms of log p(x) for both ID and OoD datasets.

In-distribution OoD: SVHN OoD: CIFAR-100
Accuracy (↑) ECE (↓) NLL (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

Deterministic 94.6 ± 0.01 0.033 ± 0.002 0.214 ± 0.02 0.921 ± 0.01 0.918 ± 0.01 0.863 ± 0.01 0.816 ± 0.01
Deep Ensembles 95.6 ± 0.01 0.020 ± 0.001 0.178 ± 0.01 0.952 ± 0.01 0.948 ± 0.01 0.911 ± 0.01 0.902 ± 0.01
DUQ 94.6 ± 0.01 0.032 ± 0.002 0.203 ± 0.02 0.950 ± 0.01 0.945 ± 0.01 0.884 ± 0.01 0.879 ± 0.01
SNGP 94.5 ± 0.01 0.025 ± 0.002 0.215 ± 0.02 0.961 ± 0.01 0.957 ± 0.01 0.907 ± 0.01 0.895 ± 0.01
DNN+SN 94.6 ± 0.01 0.033 ± 0.002 0.214 ± 0.02 0.933 ± 0.01 0.925 ± 0.01 0.865 ± 0.01 0.827 ± 0.01
DNN+NF 94.8 ± 0.01 0.030 ± 0.002 0.195 ± 0.02 0.995 ± 0.01 0.989 ± 0.02 0.941 ± 0.03 0.924 ± 0.04
DHM (Ours) 95.3 ± 0.01 0.028 ± 0.002 0.183 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

Table 1: Results for ResNet-18 on CIFAR-10, averaged over 10 independent seeds.

In-distribution OoD: SVHN OoD: CIFAR-10
Accuracy (↑) ECE (↓) NLL (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

Deterministic 77.5 ± 0.01 0.052 ± 0.002 0.901 ± 0.02 0.896 ± 0.01 0.915 ± 0.01 0.794 ± 0.01 0.814 ± 0.01
Deep Ensembles 79.3 ± 0.01 0.030 ± 0.001 0.754 ± 0.01 0.932 ± 0.01 0.938 ± 0.01 0.865 ± 0.01 0.883 ± 0.01
DUQ 77.6 ± 0.01 0.051 ± 0.002 0.898 ± 0.02 0.891 ± 0.01 0.899 ± 0.01 0.843 ± 0.01 0.839 ± 0.01
SNGP 77.5 ± 0.01 0.034 ± 0.002 0.885 ± 0.01 0.901 ± 0.01 0.907 ± 0.01 0.856 ± 0.01 0.867 ± 0.01
DNN+SN 77.5 ± 0.01 0.053 ± 0.003 0.902 ± 0.02 0.895 ± 0.01 0.912 ± 0.01 0.804 ± 0.01 0.817 ± 0.01
DNN+NF 78.0 ± 0.01 0.055 ± 0.003 0.877 ± 0.02 0.976 ± 0.02 0.975 ± 0.02 0.932 ± 0.04 0.921 ± 0.04
DHM (Ours) 78.3 ± 0.01 0.055 ± 0.003 0.876 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

Table 2: Results for ResNet-18 on CIFAR-100, averaged over 10 independent seeds.

OoD: TinyImageNet OoD: LSUN OoD: iSUN
AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

Deterministic 0.965 ± 0.01 0.972 ± 0.01 0.973 ± 0.01 0.975 ± 0.01 0.956 ± 0.01 0.963 ± 0.01
Deep Ensembles 0.992 ± 0.01 0.993 ± 0.01 0.998 ± 0.01 0.998 ± 0.01 0.991 ± 0.01 0.990 ± 0.01
DUQ 0.988 ± 0.01 0.987 ± 0.01 0.994 ± 0.01 0.995 ± 0.01 0.986 ± 0.01 0.986 ± 0.01
SNGP 0.997 ± 0.01 0.997 ± 0.01 0.998 ± 0.01 0.998 ± 0.01 0.995 ± 0.01 0.996 ± 0.01
DNN+SN 0.966 ± 0.01 0.969 ± 0.01 0.975 ± 0.01 0.981 ± 0.01 0.961 ± 0.01 0.958 ± 0.01
DNN+NF 0.997 ± 0.02 0.997 ± 0.02 0.999 ± 0.02 0.999 ± 0.02 0.998 ± 0.02 0.998 ± 0.02
DHM (Ours) 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00

Table 3: Additional experiment results for Wide ResNet-28-10 on CIFAR-10, averaged over 10
independent seeds.
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