
FWD: Real-time Novel View Synthesis with Forward Warping and Depth

Ang Cao, Chris Rockwell, Justin Johnson
University of Michigan, Ann Arbor
{ancao,cnris,justincj}@umich.edu

We show more visualizations and comparisons in the
supplementary and attached videos. Please watch the re-
sults videos for more results. We also provide implementa-
tion details, license of other methods and datasets, as well as
other experiments results. See the following contents label
for more information.

Contents

1. Model Architectures and Training details 1

2. License Discussions 2
2.1. Dataset . 2
2.2. Methods 2

3. User Study Details 2

4. Additional Results 2
4.1. Time statistics. 2
4.2. Other design ablations. 3
4.3. View number ablations. 3
4.4. Failure Cases. 3
4.5. Synthesis Results. 4

1. Model Architectures and Training details
As stated in the paper, our model consists of spatial fea-

ture network f , depth network d, view-dependent feature
MLP ψ, neural point cloud renderer π, fusion transformer
T and refinement module R. We show architecture details.
Spatial Feature Network f . The spatial feature network f
contains 8 ResNet blocks, with output channels of 32, 32,
32, 64, 64, 64,64, 61 and no downsampling. Each ResNet
block utilizes 3 × 3 /stride 1/padding 1 convolution fol-
lowed by instance norm and ReLU. Similar to [1, 2], spec-
tral normalization is utilized for each convolution for stable
training. The input images are padded by 0 to fit network.
Depth Network d. We utilize a classical U-Net for depth
refinement, consisting 8 downsampling blocks and 8 up-
sampling blocks. We pad constant zero to make the input
have feasible shape. For PatchMatchNet [3] to estimate the
initial depths, we follow the original pipeline, in which we

downsample the input images into 4 scales and predict the
depths in a coarse-to-fine manner.
View-dependent feature MLP ψ. The relative view direc-
tion change vector is first passed through a two-layer MLP
without 16 and 32 output features perspectively to get a 32-
dims feature embedding. Then this 32 dims feature embed-
ding is concatenated with the original 64 dims feature vector
and passed through another two-layer MLP with output 64
and 64 output features. We use ReLU as activation function
following MLP and no normalization layers.
Neural point cloud renderer π. The point cloud renderer
is implemented in Pytorch3D [4], which takes a point cloud
and pose P and project it to a 150 × 200 feature map, where
each pixel has 64-dims feature. The renderer fills zero with
64-dims for pixels which are invisible.

The blending weight α of the 3D point x for pixel l is

α = 1− torch.clamp(
√

s

r2
,min = 1e− 3,max = 1.0),

(1)
where s is the Euclidean distance between point x’s splatted
center and pixel l; r is the radius of point x in NDC coordi-
nate. We set r = 1.5 pixels in our experiments. To render
the value of each pixel, we employ alpha-compositing to
blend all feasible points. The rendered feature Fl of pixel l
is:

Fl =
K∑
i=1

αiFi

i−1∏
j=1

(1− αj) (2)

where Fi, αi is the feature and alpha of 3D point i. The
rendering is based on points’ depths and we blend the Top
K points with the nearest depths. We use K = 16 in our
paper, meaning we blend at most 16 points to get the results
of one pixel.

We compute Dl, the depth of pixel l using the blending
weights by:

Dl =
K∑
i=1

αidi (3)

where di is the depth of point i.
Fusion transformer T . The Key and Value are feature vec-
tors from multiple views, with the shape as NView×N×C,

1

where NView is the number of input views (3 in our exper-
iments), N is the batch size, which is H ×W , and C is the
feature dimension, which is 64. The query is a learnable to-
ken with the shape as 1×C, and expanded to N batch. The
transformer is a multi-head attention with 4 heads, project-
ing key into 16 dims embedding and output 64 dims vectors.
Refinement moduleR. We use a ResNet decoder as our re-
finement module, which consists 8 ResNet blocks, in which
we downsample at the 3rd layers and upsample at 6th and
7th layers. The output feature dims are 64, 128, 256, 256,
128, 128, 128, 3.
Two-stage training for FWD-U. We find that a two-stage
training scheme would slightly improve the performance of
FWD-U model (0.4dB). In stage one, we first train the
depth networks by constructing RGB point clouds for each
input view and projecting them to the target view via dif-
ferentiable point cloud rendering. We directly aggregate
all the point clouds from various input views and get the
rendered RGB images at target views. The depth network
is trained by photometric loss between rendered views and
target images. This step works as a simple unsupervised
MVS scheme and gives a proper initialization of the depth
network. We then train the whole model with the initial-
ized depth network in stage two. This two-stage training
scheme’s intuition is that jointly training depth network and
other components from scratch are unstable, and our first
training stage could give a initialization for depth network.

2. License Discussions
We discuss the licenses of assets.

2.1. Dataset

ShapeNet Dataset [?] . We conduct our experiments on the
ShapeNet dataset and we cite the paper [?] as required by
the author. More specifically, we download the data from
NMR, which is hosted by DVR [5] authors.
DTU MVS Dataset [6]. We conduct our experiments on
the DTU MVS dataset. This dataset doesn’t include any
license. On the other hand, we cite the paper [6] which is
required by the paper.

2.2. Methods

PixelNeRF [7] . We evaluate the official code of Pix-
elNeRF [7] for comparison. The code is hosted in the
github page https://github.com/sxyu/pixel-nerf, which uses
the BSD 2-Clause ”Simplified” License.
IBRNet [8] . We use the official code of IBR-
Net [8] for comparison, which is hosted at
https://github.com/googleinterns/IBRNet. This project
has the Apache License 2.0.
MVSNeRF [9]. We use the official code of MVS-
NeRF [9] for comparison, which is hosted at
https://github.com/apchenstu/mvsnerf with MIT License.

SynSin [2]. The code of SynSin [2] is hosted at
https://github.com/facebookresearch/synsin with Copyright
(c) 2020, Facebook All rights reserved.
Stable View Synthesis (SVS) [10]. We use the code hosted
at https://github.com/isl-org/StableViewSynthesis for eval-
uation, with MIT License and Copyright (c) 2021 Intel ISL
(Intel Intelligent Systems Lab).
DeepBlending [11]. We implement it according to the code
at https://github.com/Phog/DeepBlending. This work is un-
der Apache License.
PixelNeRF-DS[12]. We use the number reported in [12].
Pytorch3D. We use the code from Pytorch3D [?]:
https://github.com/facebookresearch/pytorch3d for our dif-
ferentiable renderer. The code is licensed with BSD 3-
Clause License.

3. User Study Details

As detailed in the paper, we conduct user study to eval-
uate perceptual quality of synthesized images. We provide
more information about user study here.

We employ the standard A/B test paradigm as our user
study format, which asks workers to select the closest re-
sult to a ground truth image between two competing results.
Results of method A and B and ground truth target view are
available during test. All views in the test set (690 views in
total) are evaluated and each view is judged by 3 workers.

All tests are conducted using thehive.ai, a website similar
to Amazon Mechanical Turk. Workers were given instruc-
tions and examples of tests, and then they were given a test
to identify whether they understand the task. Only workers
passing the test were allowed to conduct A/B test. Three
images of the same view are shown in the test, where the
first image is the ground truth target views and the rest two
images are synthesized images. Workers are asked to select
“left” or “right” image to indicate their preference. Results
of method A and B are randomly placed for every test for
fairness. We show the instructions and examples below.

4. Additional Results

Again, please see attached videos for comparison be-
tween ours and other methods.

4.1. Time statistics.

We show times spent on each component of FWD-D
model during a single forward pass in Table 1. As shown
in the Table, only 30 percent and 12 percent of times are
spent on the Rendering process and Fusion process, indicat-
ing that our renderer and Transformer are highly-efficient.

Moreover, we compare the time distributions of our
method with PixelNeRF and IBRNet in Table 2.

2

https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip
https://github.com/sxyu/pixel-nerf
https://github.com/googleinterns/IBRNet
https://github.com/apchenstu/mvsnerf
https://github.com/facebookresearch/synsin
https://github.com/isl-org/StableViewSynthesis
https://github.com/Phog/DeepBlending
https://github.com/facebookresearch/pytorch3d

Figure 1. Instructions of A/B test. We show the instructions of
A/B test used in our paper.

Table 1. Inference time of FWD-D. We count times used for
each stage in single forward pass with a batch size of 24.

Constr. Render Fusion Refine. Total

Time (ms) 40.39 172.57 70.11 302.59 585.66
Percent 6.90 29.47 11.97 61.67 100.00

Table 2. Inference time between different methods. We study
the time distributions for each method to render a total scene (46
views) for PixelNeRF, IBRNet and FWD. Feature Encoder refers
feature extractions for input views, including feature encoding for
PixelNeRF and IBRNet, feature encoding and depth regression for
FWD. Renderer refers to the time spent for synthesizing each view.

model Feature
Encoder

Renderer Total

PixelNeRF 0.696s 30min 30min
IBRNet 0.87s 163.2s 173s
FWD 0.085s 1.10s 1.19s

4.2. Other design ablations.

In Table 3, we conduct more ablations for fusion and
view-dependent feature MLP on FWD-D model.
IBRNet’s Multi-view Feature Aggregation (IBR MFA). We
replace our’s fusion Transformer with IBRNet’s multi-view
feature aggregation mechanism. In IBR MFA, feature vec-

Table 3. Ablation Studies. We show more ablation study on
FWD-D.

Model PSNR SSIM LPIPS

Full model 21.98 0.791 0.208
w/o Transformer 20.95 0.748 0.241
w/o View dependence 21.16 0.769 0.212
IBR MFA 21.47 0.785 0.210
VD w/o depth 21.56 0.785 0.213

tors are fused using variance as the global pooling opera-
tor. The per-element mean and variance are computed from
feature vectors to capture global information and then con-
catenated with each feature vector, which contains local in-
formation. A small shared MLP is used to integrate both
local and global information, resulting in multi-view aware
feature vectors and corresponding weights. Another MLP is
used to map the weighted feature vector into a final feature
vector. See IBRNet’s paper for more information.
View dependence feature without depth (VD w/o depth).
Our current view-dependent feature MLP takes a 4-
dimension feature vector as input, the first three of which
is relative view change and the last of which is depth. In
this ablation model, we only use the first three-dimension
as inputs and ignore the depth information.

4.3. View number ablations.

In Table 4, we explore how the synthesis quality and
speeds change with varying input view numbers. With
increasing input view numbers, we can observe that our
method can achieve higher quality while requiring more
computations and times to process input views. In particu-
lar, the time spent on MVS module and fusion Transformer
is significantly increased with increasing input views. How-
ever, our method is still much more efficient than other
baseline methods with varying input view number.

4.4. Failure Cases.

We show failure cases for our method in Figure 2 for
FWD model. One distinct failure pattern is the artifact cloud
shown in the figure, which occasionally happens for sev-
eral challenging viewpoints and scenes. Several reasons
jointly cause this artifact. 1) At several challenging view-
points which are very far away from input views, imperfect
depth estimations would cause significant misalignments in
the target view. Also, regions in the target view are not fully
visible in inputs. This situation is challenging for the fusion
module to give reasonable fused feature maps. 2) Moreover,
the refinement module couldn’t faithfully inpaint and mod-
ify the fused feature maps caused by reason 1), since the
training data is limited. The limited training data makes the
model easy to overfit and cannot generalize very well for
several test scenes. We believe that training our model on a

3

Table 4. We investigate the novel view synthesis performance and speed when provided with more input views.

3 views 6 views 9 views
PSNR SSIM LPIPS FPS PSNR SSIM LPIPS FPS PSNR SSIM LPIPS FPS

PixelNeRF 19.24 0.687 0.399 0.025 20.29 0.725 0.372 0.013 20.91 0.75 0.348 0.009
IBRNet 18.86 0.695 0.387 0.265 20.93 0.780 0.312 0.176 21.30 0.805 0.285 0.125
FWD-U 17.42 0.598 0.341 35.4 18.11 0.623 0.323 15.0 18.93 0.648 0.304 8.5
FWD 20.15 0.721 0.259 35.4 21.40 0.758 0.235 15.0 21.98 0.779 0.218 8.5
FWD-D 21.98 0.791 0.208 43.2 22.54 0.802 0.199 29.5 22.95 0.816 0.188 22.8

Figure 2. Failure Cases. We show some failure cases for FWD model.

large-scale dataset would effectively resolve these artifacts.

4.5. Synthesis Results.

We show more synthesis results in the following. For
comparison, we show results of the same scene and views.
We first show the results of FWD-U in Figure 3, FWD in
Figure 4 and FWD-D in Figure 5. We also show baseline
results: PixelNeRF in Figure 6, IBRNet in Figure 7, MVS-
NeRF in Figure 8, FVS in Figure 9 and Blending-R in Fig-
ure 10. Again, please see attached videos for comparison
between ours and other methods.

4

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 3. Efficient view synthesis from very sparse views for FWD-U. We show the view synthesis results with 3 input views on DTU
MVS test dataset for FWD-U trained with unsupervised depths.

5

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 4. Efficient view synthesis from very sparse views for FWD. We show the view synthesis results with 3 input views on DTU
MVS test dataset for FWD.

6

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 5. Efficient view synthesis from very sparse views for FWD-D. We show the view synthesis results with 3 input views on DTU
MVS test dataset for FWD-D.

7

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 6. Efficient view synthesis from very sparse views for PixelNeRF [7]. We show the view synthesis results with 3 input views on
DTU MVS test dataset for PixelNeRF.

8

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 7. Efficient view synthesis from very sparse views for IBRNet [8]. We show the view synthesis results with 3 input views on
DTU MVS test dataset for IBRNet.

9

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 8. Efficient view synthesis from very sparse views for MVSNeRF. We show the view synthesis results with 3 input views on
DTU MVS test dataset for MVSNeRF.

10

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 9. Efficient view synthesis from very sparse views for FVS. We show the view synthesis results with 3 input views on DTU MVS
test dataset for FVS.

11

In
pu

t:
3

vi
ew

s
of

he
ld

-o
ut

sc
en

e
N

ov
el

vi
ew

s

Figure 10. Efficient view synthesis from very sparse views for Blending-R. We show the view synthesis results with 3 input views on
DTU MVS test dataset for Blending-R.

12

References
[1] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN

training for high fidelity natural image synthesis,” in ICLR,
2019. 1

[2] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson, “Synsin:
End-to-end view synthesis from a single image,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7467–7477, 2020. 1, 2

[3] F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys,
“Patchmatchnet: Learned multi-view patchmatch stereo,” in
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 14194–14203, 2021. 1

[4] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo,
J. Johnson, and G. Gkioxari, “Accelerating 3d deep learning
with pytorch3d,” arXiv preprint arXiv:2007.08501, 2020. 1

[5] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger,
“Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3504–3515, 2020. 2

[6] H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B.
Dahl, “Large-scale data for multiple-view stereopsis,” IJCV,
vol. 120, no. 2, pp. 153–168, 2016. 2

[7] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelnerf: Neu-
ral radiance fields from one or few images,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 4578–4587, 2021. 2, 8

[8] Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan,
H. Zhou, J. T. Barron, R. Martin-Brualla, N. Snavely, and
T. Funkhouser, “Ibrnet: Learning multi-view image-based
rendering,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4690–4699,
2021. 2, 9

[9] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and
H. Su, “MVSNeRF: Fast generalizable radiance field re-
construction from multi-view stereo,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 14124–14133, 2021. 2

[10] G. Riegler and V. Koltun, “Stable view synthesis,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2021. 2

[11] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and
G. Brostow, “Deep blending for free-viewpoint image-based
rendering,” vol. 37, no. 6, pp. 257:1–257:15, 2018. 2

[12] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-
supervised nerf: Fewer views and faster training for free,”
arXiv preprint arXiv:2107.02791, 2021. 2

13

