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A. Limitation and Negative Impact

The proposed FR-IQA model predicts image quality by
measuring the fidelity deviation from its pristine-quality ref-
erence. Unfortunately, in the vast majority of practical ap-
plications, reference images are not always available or dif-
ficult to obtain, which indicates our method is limited espe-
cially for authentically-distorted images.

B. ESRGAN and DnCNN Synthesis Process

For ESRGAN Synthesis, we adopt the DIV2K [1] train-
ing set as clean high-resolution (HR) images and employ
the bicubic downsampler with the scale factor 2 to obtain
the low-resolution (LR) images. Then, we retrain the orig-
inal ESRGAN model using HR-LR pairs with the size of
128 x 128 and 64 x 64 cropped from the training HR and
LR images, respectively. The ESRGAN model is trained
with the GAN loss for 50 epochs and 50 groups of interme-
diate ESRGAN models are obtained. The learning rate is
initialized to 2e-4 and then decayed to 2e-5 after 20 epochs.
We take 1,000 image patches (288 x 288) randomly from
DIV2K [1] validation set and Flickr2K [56] as reference im-
ages in unlabeled data, which are propagated into the bicu-
bic downsampler to obtain the degraded images. The cor-
responding distorted images can be obtained by feeding the
degraded images into 50 groups of intermediate ESRGAN
models.

For synthetic noises in DnCNN Synthesis, we use the ad-
ditive white Gaussian noise with noise level 25. DnCNN is
trained to learn a mapping from noisy image to denoising
result. The DnCNN model is trained with the MSE loss for
50 epochs and 50 groups of intermediate DnCNN models
are obtained. The learning rate is fixed to le-4 and then

Table A. SRCC comparisons on individual distortion types on the
LIVE database. Red and blue are utilized to indicate top 1™ and
2" rank, respectively.

Database LIVE
Type WN JPEG JP2K FF GB

WaDIQaM-FR [6] 0.975 0.959 0.934 0.941 0.915
DISTS [13] 0.969 0.982 0.971 0.961 0.969
PieAPP [40] 0.963 0.941 0.885 0.920 0.867
LPIPS [73] 0.968 0.982 0.968 0.955 0918
our(SL) 0.983 0.984 0.952 0.967 0912
our(JSPL) 0.984 0.986 0.959 0.968 0.943

decayed to le-5 after 25 epochs. Similarly, we also take
same 1, 000 image patches as reference images in unlabeled
data. The restored images can be achieved by feeding the
noisy images into 50 groups of intermediate DnCNN mod-
els, which are regared as the corresponding distorted images
in unlabeled data.

C. More Comparisons on Individual Distortion
Types and Cross-dataset

Comparisons on Individual Distortion Types. To
further investigate the behaviors of our proposed method,
we exhibit the performance on individual distortion type
and compare it with several competing FR-IQA models
on LIVE. The LIVE dataset contains five distortion types,
i.e., additive white Gaussian noise (WN), JPEG compres-
sion (JPEG), JPEG2000 compression (JP2K), Gaussian blur
(GB) and Rayleigh fast-fading channel distortion (FF). As
shown in Table A, the average SRCC values of above ten
groups are reported. It is worth noting that our methods
achieve significant performance improvements on three dis-
tortion types, i.e., WN, JPEG and FF. Overall, better consis-
tency with subjective scores and the consistently stable per-
formance across different distortion types of the proposed
scheme makes it the best IQA metric among all the com-
pared metrics.

Comparisons on Cross-dataset. To verify the general-
ization capability, we further evaluate the proposed method
on three groups of cross-dataset settings. We compare five
FR-IQA methods, including: WaDIQaM-FR [6], DISTS
[13], PieAPP [46], LPIPS [73] and IQT [9] with the pro-
posed model under two different learning strategies, i.e.,
SL and JSPL. We retrain the DISTS [13], PieAPP [46] and



Table B. SRCC comparisons on different cross-dataset with the
PIPAL as training set. Red and blue are utilized to indicate top 1*
and 2™ rank, respectively.

Traingning Set Test Sets

Methods || abeld Data (& Unlabeled Data)|LIVE CSIQ TID2013 KADID-10k
WaDIQaM-FR [6] PIPAL 0.910 0.877 0.802 0.713
DISTS [13] PIPAL 0.913 0.876 0.803 0.706
PieAPP [46] PIPAL 0.904 0.875 0.762 0.699
LPIPS [73] PIPAL 0.908 0.863  0.795 0.717
IQT [9] PIPAL 0.917 0.880 0.796 0.718
our(SL) PIPAL 0.919 0.873 0.804 0.717
our(JSPL)  |PIPAL & KADID-10k Synthesis|0.930 0.894 0.812 0.776

Table C. SRCC comparisons on different cross-dataset with the
KADIDI10k as training set. Red and blue are utilized to indicate
top 1* and 2™ rank, respectively.

Traingning Set Test Sets

Methods Labeld Data (& Unlabeled Data)  |LIVE CSIQ TID2013 PIPAL Val.
WaDIQaM-FR [6] KADID-10k 0.948 0931 0861  0.712
DISTS [13] KADID-10k 0.954 0939 0.881  0.703
PieAPP [46] KADID-10k 0.917 0936 0.856  0.633
LPIPS [73] KADID-10k 09320917 0821  0.671
IQT [9] KADID-10k 0.970 0.943 0.899  0.718
our(SL) KADID-10k 0.973 0951 0908  0.770

our(JSPL)  |KADID-10k & KADID-10k Synthesis|0.974 0.953  0.910 -

our(JSPL) KADID-10k & ESRGAN Synthesis | - - - 0.801

Table D. SRCC comparisons on different cross-dataset with the
TID2013 as training set. Red and blue are utilized to indicate top
1" and 2™ rank, respectively.

Traingning Set Test Sets
Methods Labeld Data (& Unlabeled Data) |LIVE CSIQ KADID-10k PIPAL Val.

WaDIQaM-FR [0] TID2013 09110913 0.760 0.552
DISTS [13] TID2013 09230914  0.737 0.458
PicAPP [46] TID2013 0.888 0.886  0.573 0.401
LPIPS [73] TID2013 0.8950.913  0.761 0.595
IQT [9] TID2013 0.940 0929  0.775 0.639
our(SL) TID2013 09440932 0.762 0.651

our(JSPL)  |TID2013 & KADID-10k Synthesis|0.948 0.934  0.795 -
our(JSPL) TID2013 & ESRGAN Synthesis | - - - 0.699

LPIPS [73] by the source codes provided by the authors.

Although the source training code for WaDIQaM-FR and
IQT is not publicly available, we reproduce WaDIQaM-
FR [6] and IQT [9], and achieve the similar performance
of the original paper. From Table B, all FR-IQA models
with supervised learning (SL) are trained using the largest
human-rated IQA dataset, i.e., PIPAL, so the results on the
other four test datasets are relatively close. Because our
approach with JSPL makes full use of unlabeled KADID-
10k Synthesis which contains the same distortion types with
KADID-10k, the higher performance on KADID-10k can
be obtained.

From Table. C, all FR-IQA models with supervised
learning (SL) are trained on KADID-10k, which contains
the most diverse traditional distortion types. Therefore,
compared to training on PIPAL or TID2013, all the FR-IQA
methods achieve the best performance on traditional IQA
datasets, e.g., LIVE and CSIQ. Compared to other FR-IQA
models, the proposed FR-IQA designs the spatial attention
to deploy in computing difference map for emphasizing in-

Table E. PLCC / SRCC results for computing spatial attention
based on different features.

Based on PIPAL Val.
Reference feature f7, 0.868 / 0.868
Distortion feature f7,; 0.861/0.860

Distance map £, 0.864/0.864

Table F. Performance on different attention mechanism on PIPAL.

Attention Mechanism
Spatial Channel SRCC

0.857
0.868
0.840
0.859

NXNX%
NN% X%

Table G. PLCC / SRCC results for varying threshold parameter
(i.e., Tmin) on PIPAL [19] and KADID-10k [35].

PIPAL KADID-10k

Tmin PLCC/SRCC PLCC/SRCC
0.4 0.872/0.870 0.951/0.949
0.5 0.877/0.874 0.963/0.961
0.6 0.874/0.872 0.95570.955

Table H. SRCC performance on different sliced Wasserstein. p denotes
local region size.

Methods PIAPL KADID-10k
Global 0.755 0.509
p =32 0.820 0.881
p=16 0.862 0.928
Local p=38 0.868 0.933
p=4 0.866 0.939
p=2 0.864 0.944
p=1 0.857 0.940

formative regions, and achieves the best performance in all
FR-IQA models with supervised learning. However, when
testing on PIPAL which contains distortion images restored
by multiple types of image restoration algorithms as well as
GAN-based restoration, significant performance degrada-
tion can be observed due to the distribution variation among
different datasets. To alleviate this problem, the proposed
JSPL strategy can improve performance to some extent for
the use of unlabeled data.

From Table. D, all FR-IQA models with supervised
learning (SL) are trained on TID2013. Due to fewer
human-annotations and distorted samples are provided in
TID2013, compared to KADID-10k, performance drop can
be observed on traditional datasets, e.g., LIVE and CSIQ,
which indicates the collection of massive MOS annotations
is beneficial to the performance improvement. However,
the collection of massive MOS annotations is very time-
consuming and cumbersome. In this work, we consider a
more encouraging and practically feasible SSL setting, i.e.,
training FR-IQA model using labeled data as well as unla-
beled data. Based on three groups of cross-dataset exper-
iments, the proposed JSPL can exploit positive unlabeled
data, and significantly boost the performance and the gen-
eralization ability of FR-IQA.



Table I. PLCC / SRCC comparisons on different FR-IQA with SL
or JSPL training on PIPAL. Red and blue are utilized to indicate
top 1* and 2™ rank, respectively.

Method SL JSPL
WaDIQaM-FR [0] 0.778 /0.761 0.793/0.775
DISTS [13] 0.813/0.806 0.822/0.812
PieAPP [46] 0.785/0.778 0.806/0.796
LPIPS [73] 0.790/0.790 0.809/0.802
1QT [9] 0.876/0.865 0.876/0.873
our 0.868 /0.868 0.8771/0.874

D. More Ablation Studies

Spatial Attention. As far as the design of spatial at-
tention, we adopt a much simple design by computing spa-
tial attention based on the reference feature while apply-
ing it to the distance map to generate calibrated difference
map. We conduct the ablation study by computing spa-
tial attention based on different features, i.e., the reference
feature f}.,, the distortion feature f7,;; and the distance
map fp,,. Considering the superiority of extracting fea-
tures from reference in Table E, individual spatial attention
on reference features is finally adopted in our method, while
in ASNA [3], spatial attention and channel attention are di-
rectly adopted on distance map. In Table F, ablation stud-
ies on attention mechanism are reported, where individual
spatial attention on reference features performs best. In IW-
SSIM [60], spatially local information is suggested as one
key factor for assessing distortions, which motivates us to
only adopt spatial attention.

Hyper-parameter 7,,;,. We study the effects of thresh-
old parameter, i.e., T, on PIPAL [19] and KADID-
10k [35]. From Table G, the best performance is achieved
on both two datasets when 7,,,;,, is set to 0.5.

LocalSW. As for LocalSW, we suggest that local regions
with proper size are more suitable for assessing distortions.
As shown in Table H, region size p = 8 is the best choice
on PIPAL, while original sliced Wasserstein (Global) yields
significant performance drop. We further study the effects
of hyper-parameter p on PIPAL [19] and KADID-10k [35],
because the distortion types of these two datasets are very
different. Due to the spatial misalignment properties of
GAN-based distorted images in PIPAL, when the region
size p is set to 8, the proposed LocalSW can compare the
features within the most appropriate range around the cor-
responding position as shown in Table H. When applied to
traditional dataset, i.e., KADID-10k, the LocalSW with the
hyper-parameter p = 2 achieves the best results.

Applying JSPL to Different FR-IQA models. To ver-
ify the generalization capability of JSPL, we apply the pro-
posed JSPL to 6 different FR-IQA models, and use the PI-
PAL training set to retrain the 6 different FR-IQA mod-
els. From Table I, the pioneering CNN-based FR-IQA mod-
els, e.g., WaDIQaM-FR [6], DISTS [13], PieAPP [46] and
LPIPS [73] trained with PIPAL in supervised learning man-

Table J. Total number of distortion images (# U), number of posi-
tive samples (# PU) and number of negative samples (# NU) in the
different distortion types.

Distortion Types #U #PU #NU
DnCNN denoising algorithm 2,000 1,996 4
Gaussian blur 2,000 1,996 4
Additive white Gaussian noise 2,000 1,979 21
Color over-saturation 2,000 0 2,000
Color blocking 2,000 10 1,990
Sharpness 2,000 12 1,988

(a) Reference

(b) GB (c) WN (d) DN

Figure A. Visualization of the excluded outliers, i.e., the cor-
responding reference images, DnCNN denoising (DN) distorted
images, Gaussian blur (GB) distorted images and additive white

Gaussian noise (WN) distorted images.

ner perform better than the original models (Table 4 in the
manuscript) on PIPAL validation set. In terms of the SRCC
metric, the proposed FR-IQA achieves the best performance
with the help of LocalSW and spatial attention. Compared
to the supervised learning, the proposed JSPL can further
boost the performance of all six FR-IQA models, which in-
dicates that the proposed learning strategy has good gener-
alization ability.

E. Discussion

More Analysis on Binary Classifier. The labeled IQA
datasets [19, 35] selected reference images which are rep-
resentative of a wide variety of real-world textures, and
should not be over-smooth or monochromatic. The refer-
ence images in unlabeled data are chosen randomly from
DIV2K [1] validation set and Flickr2K [56], hence a small
number of images may not meet the requirements. The un-
labeled data may also contain distorted images which differ
significantly from the distribution of the labeled data.

To verify that the binary classifier can eliminate the out-
liers mentioned above, we conduct the experiment to an-
alyze the positive unlabeled data and outliers selected by
the classifier. Take our FR-IQA as an example, the PIPAL
training samples are selected as labeled data and the unla-
beled data are considered to use the KADID-10k Synthe-
sis, which contain multiple distortion types and are more
useful for analysis than ESRGAN Synthesis and DnCNN



Table K. SRCC comparison on different numbers of reference images and
distortion types.

# Reference image

. . 1,000 500 100
Distortion
Full 25 types 0.776 0.766 0.739
10 types with top-10 ratios 0.770 0.759 0.735
10 types with bottom-10 ratios 0.743 0.736 0.719

Synthesis. We choose the 6 distortion types out of a to-
tal of 25 for analysis, i.e., DnCNN denoising algorithm,
Gaussian blur, additive white Gaussian noise, color over-
saturation, color blocking and sharpness. As shown in Ta-
ble J, each distortion type contains 2,000 distorted images.
The three types of distortion, i.e., DnCNN denoising algo-
rithm, Gaussian blur and additive white Gaussian noise, are
present on both PIPAL and KADID-10k Synthesis and are
therefore heavily selected as positive unlabeled data by the
classifier for semi-supervised learning of IQA models. In
contrast, the other three types of distortion are unseen for
PIPAL, and the corresponding distortion images differ sig-
nificantly from the distribution of the labeled data in PIPAL,
which are excluded by the classifier. Furthermore, we find
that the 4 outliers in the DnCNN denoising algorithm or
Gaussian blur settings are synthesized based on the same
two reference images, as shown in Fig. A. We consider the
reason is that those two reference images are over-smooth
or monochromatic, which lack real-world textures and not
meet the requirement for reference images. In summary,
the proposed JSPL is leveraged to identify negative samples
from unlabeled data, e.g., reference images that lack real-
world textures or distorted images that differ significantly
from the labeled data.

More discussion on how much unlabeled data and
number of distortions. We use the PIPAL training set as
labeled set, and use several representative distortion mod-
els to synthesize unlabeled samples. Specifically, there are
total 25 distortion types in KADID-10k and 1,000 refer-
ence images. Based on the trained classifier, the ratios
p = besitve “gtii’leelid samples can be computed for 25 distortion
types. In Table J, distortion types with top-3 and bottom-
3 ratios are presented. Taking KADID-10k as testing bed,
we discuss the sensitivity of our JSPL with different num-
bers of unlabeled samples and distortion types. As for the
number of reference images, we set it as 1,000, 500 and
100. As for distortions, we adopt three settings, i.e., full
25 types, 10 types with top-10 p ratios and 10 types with
bottom-10 p ratios. The results are summarized in Table K.
We can observe that: (i) Benefiting from unlabeled samples,
our JSPL contributes to performance gains for any setting,
i.e., the models in Table K are all superior to the model
trained on only labeled data (SRCC = 0.717 by Our(SL)
in Table B). (ii)) When reducing the number of reference
images from 1,000 to 500, our JSPL slightly degrades for
all the three distortion settings. And it is reasonable that
the performance of JSPL is close to Our(SL) when few un-
labeled samples are exploited. (iii) As for distortions, the

IQA models with bottom-10 p ratios are notably inferior to
Our(JSPL), indicating that JSPL can well exclude outliers.

F. More Details on IQA Datasets

Details of the different IQA datasets containing the dis-
tortion types can be viewed in Table L. Among them, the
KADID-10k contains the richest traditional distortion types
and the PIAPL contains the richest distortion types of the
recovery results.

As shown in Fig. B, we take an example image from val-
idation set of PIPAL to visually show the consistency be-
tween various methods and subjective perception, inlcuding
PSNR, SSIM [58], MS-SSIM [61], LPIPS [73], IQT [9] and
our method. One can see that the proposed FR-IQA with
JSPL achieves the closest rank agreement with the human
annotated MOS.



Table L. Descriptions of the five IQA databases.

Distortion Types

Database

# Ref.

# Dis.

TID2013 [45]

25

3,000

(1) Additive Gaussian noise; (2) Additive noise in color components; (3)
Spatially correlated noise; (4) Masked noise; (5) High frequency noise; (6)
Impulse noise; (7) Quantization noise; (8) Gaussian blur; (9) Image denoising;
(10) JPEG compression; (11) JPEG2000 compression; (12) JPEG transmission
errors; (13) JPEG2000 transmission errors; (14) Non eccentricity pattern noise;

(15) Local block-wise distortions of different intensity; (16) Mean shift
(intensity shift); (17) Contrast change; (18) Change of color saturation; (19)
Multiplicative Gaussian noise; (20) Comfort noise; (21) Lossy compression of
noisy images; (22) Image color quantization with dither; (23) Chromatic

aberrations; (24) Sparse sampling and reconstruction

LIVE [47]

29

982

(1) JPEG compression; (2) JPEG2000 compression; (3) Additive white Gaussian
noise; (4) Gaussian blur; (5) Rayleigh fast-fading channel distortion

CSIQ [33]

30

866

(1) JPEG compression; (2) JP2K compression; (3) Gaussian blur; (4) Gaussian
white noise; (5) Gaussian pink noise; (6) Contrast change

KADID-10k [35]

81

10,125

(1) Gaussian blur; (2) Lens blur; (3) Motion blur; (4) Color diffusion; (5) Color
shifting; (6) Color quantization; (7) Color over-saturation; (8) Color
desaturation; (9) JPEG compression; (10) JP2K compression; (11) Additive
white Gaussian noise; (12) White with color noise; (13) Impulse noise; (14)
Multiplicative white noise; (15) DnCNN denoising algorithm; (16) Brightness
changes; (17) Darken; (18) Shifting the mean; (19) Jitter spatial distortions; (20)
Non-eccentricity patch; (21) Pixelate; (22) Quantization; (23) Color blocking;
(24) Sharpness; (25) Contrast

PIPAL [19]

250

25,850

(1) Median filter denoising; (2) Linear motion blur; (3) JPEG and JPEG 2000;
(4) Color quantization; (5) Gaussian noise; (6) Gaussian blur; (7) Bilateral
filtering; (8) Spatial warping; (9) Comfort noise; (10) Interpolation; (11) A+;
(12) YY; (13) TSG; (14) YWHM; (15) SRCNN; (16) FSRCNN; (17) VDSR;
(18) EDSR; (19) RCAN; (20) SFTMD; (21) EnhanceNet; (22) SRGAN; (23)
SFTGAN; (24) ESRGAN; (25) BOE; (26) EPSR; (27) PESR; (28) EUSR; (29)
MCML; (30) RankSRGAN; (31) DnCNN; (32) FFDNet; (33) TWSC; (34)
BM3D; (35) ARCNN; (36) BM3D + EDSR; (37) DnCNN + EDSR; (38)
ARCNN + EDSR; (39) noise + EDSR; (40) noise + ESRGAN;

MOST
PSNRT
SSIM 7
MS-SSIM1
LPIPS|
QT+
Ours(SL)T

Ours(JSPL) 1
Figure B. An evaluation example from validation set of PIPAL. The quality is measured by MOS and 7 IQA methods.

1359.45(1)
24.18(2)
0.679(3)
0.893(3)
0.198(4)

1364.39(1)
0.765(1)
0.765(1)

1327.90(2) 1261.15(3) 1213.73(4) 1206.27(5) 868.30(6)
22.99(4) 26.32(1) 23.61(3) 20.67(5) 19.91(6)
0.572(5) 0.720(2) 0.620(4) 0.863(1) 0.450(4)
0.882(5) 0.934(2) 0.883(4) 0.938(1) 0.703(6)
0.161(2) 0.174(3) 0.252(5) 0.110(1) 0.327(6)
1327.203) 1135.62(2) 1282.94(5) 1316.89(4) 1069.47(6)
0.757(3) 0.758(2) 0.734(5) 0.752(4) 0.689(6)
0.759(2) 0.756(3) 0.736(5) 0.754(4) 0.688(6)

The numbers in

brackets indicate the ranking of the corresponding distortion image.
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