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We provide details about the main baselines and
MonoScene in Sec. 1, and include additional qualitative and
quantitative results in Sec. 2.

Results on image sequences are in the supplementary
video: https://youtu.be/gh7LaltRJImE.

1. Architectures details

1.1. Baselines

AICNet [8]. We use the official implementation of AIC-
Net'. For the RGB-inferred version, i.e. AICNet®", we in-
fer depth with the pre-trained AdaBins [2] on NYUV2 [14]
and SemanticKITTI [ 1] from the official repository?.

3DSketch [4]. We use 3DSketch official code®. For
3DSketch™P, we again use AdaBins (cf. above) and con-
vert depth to TSDF with ‘tsdf-fusion’* from the 3DMatch
Toolbox [17].

JS3C-Net [16]. We use the official code of JS3C-Net’.
For JS3C-Net®®, we generate the input point cloud by un-
projecting the predicted depth (using AdaBins) to 3D using
the camera intrinsics. The semantic point clouds, required
to train JS3C-Net, are obtained by augmenting the unpro-
jected point clouds with the 2D semantics obtained using
the code® of [19].

LMSCNet [12]. We use the official implementation of
LMSCNet’. For LMSCNet'", the input occupancy grid is
obtained by discretizing the unprojected point cloud.

"https://github.com/waterljwant/SSC
’https://github.com/sharigqfarooql23/AdaBins
3https://github.com/charlesCXK/TorchSsc
4https://github.com/andyzeng/tsdf-fusion
Shttps://github.com/yanx27/JS3C-Net
Shttps://github.com/YeLyuUT/SSeg
"https://github.com/cv-rits/LMSCNet
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Figure 1. MonoScene 3D network. The 3D UNet uses 2 down-
scale layers with DDR blocks [9] and 2 upscale layers with deconv.
The completion head uses ASPP and an optional deconv layer.
Notations: DDR(dilation, downsample rate), Deconv(kernel size,
dilation), ASPP(dilations).

1.2. MonoScene

Fig. 1 details our 3D UNet. Similar to 3DSketch [4],
we adopt DDR [9] as the basic building block for large re-
ceptive field and low memory cost. The 3D encoder has
2 layers, each downscales by half and has 4 DDR blocks.
The 3D decoder has two deconv layers, each doubles the
scale. Similar to others [12] the completion head has an
ASPP with dilations (1, 2, 3) to gather multi-scale features
and an optional deconv to reach output size — used in Se-
manticKITTT only.

For training, MonoScene took 7 hours using 2 V100 32g
GPUs (2 items per GPU) on NYUv2 [14] and 28 hours to
train using 4 V100 32g GPUs (1 item per GPU) on Se-
manticKITTI [1].

2. Additional results
2.1. SemanticKITTI

Quantitative performance. We report performance on
validation set in Tab. 1. Comparing against the test
set performance from the main paper Tab. 1b, we no-
tice MonoScene generalizes better than JS3C-Net™®" and
AICNet™®® since the validation and test set gap is smaller
(—0.42 vs —1.34 and —1.22). We also report the complete
SemanticKITTI official benchmark (i.e. hidden test set) in
Tab. 2 showing that while MonoScene uses only RGB, it
still outperforms some of the 3D input SSC baselines.


https://youtu.be/qh7La1tRJmE
https://github.com/waterljwant/SSC
https://github.com/shariqfarooq123/AdaBins
https://github.com/charlesCXK/TorchSSC
https://github.com/andyzeng/tsdf-fusion
https://github.com/yanx27/JS3C-Net
https://github.com/YeLyuUT/SSeg
https://github.com/cv-rits/LMSCNet
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Method SSCInput| IoU | @ H ] | H B E B H B = B |mloU
LMSCNet® [12] %  [28.61[40.68 1822 4.38 0.00 1031 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00| 6.70
3DSketch™® [4] |z 2T5PF 133.30(41.32 21.63 0.00 0.00 14.81 18.59 0.00 0.00 0.00 0.00 19.09 0.00 26.40 0.00 0.00 0.00 0.73 0.00 0.00| 7.50
AICNet™® [8] x" 79PN 129 59 143,55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00| 8.31
#JS3C-Net®™ [16]| &P  |38.98(50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45|10.31
MonoScene (ours)| =™ [37.12|57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48|11.50

* Uses pretrained semantic segmentation network.

Table 1. Performance on SemanticKITTI [1] (validation set). We report the performance on semantic scene completion (SSC - mloU)
and scene completion (SC - IoU) for RGB-inferred baselines and our method.

Method ‘ Input ‘IOU mloU
3D

SSCNet [15] z™PF 1298 95
TS3D [7] 2TSPF L 27e0 1298 9.5
TS3D+DNet [1] PP 1250 10.2
ESSCNet [18] P 418 175
LMSCNet [12] Z°° 56.7 17.6
TS3D+DNet+SATNet [ 1] Z°° 506 17.7
Local-DIFs [11] 2% 57.7 227
JS3C-Net [16] zP 56.6 23.8
S3CNet [5] z°° 456 29.5
2D

MonoScene | zE |34.2 11.1

Table 2. Complete SemanticKITTI official benchmark (hidden
test set). Results are taken from [13]. Despite using only single
RGB image as input, MonoScene still surpasses some of the SSC
baselines with 3D input.

Qualitative performance. In Fig. 2 we also include ad-
ditional qualitative results. Compared to all baselines,
MonoScene captures better landscape and objects (e.g. cars,
rows 3-9; pedestrian, rows 6, 10; traffic-sign, rows 3, 5).
Still, it struggles to predict thin small objects (e.g. trunk,
row 1; pedestrian, row 3; traffic-sign, row 2, 6), separate
far away consecutive cars (e.g. row 5, 7, 8), and infer very
complex, highly cluttered scenes (e.g. rows 9, 10).

Evaluation scope. Tab. 3 reports the performance when
considering either only the voxels inside FOV (in-FOV),
outside FOV (out-FOV), or all voxels (Whole Scene) as re-
ported in the main paper. Compared to the Whole Scene,
the in-FOV performance is higher since it considers visible
surfaces, whereas the out-FOV performance is significantly
lower since the image does not observe it.

2.2.NYUv2

We show additional qualitative results in Fig. 3. In
overall, MonoScene predicts better scene layouts and bet-
ter objects geometry, evidently in rows 1-4, 6, 9, 10. Still,

MonoScene mispredicts complex (e.g. bookshelfs, row 1, 4,
6), or rare objects (running machine, row 8). Sometimes, it
confuses semantically-similar classes (e.g. window/objects,
row 6, 8; beds/objects, row 1, 5; furniture/table, row 1, 2)
due to the high variance of indoor scene i.e. wide range
of camera poses, objects have completely different appear-
ances, poses and positions even in the same category e.g.
beds (rows 1, 5-7, 9); sofa (row 2-4).

2.3. Generalization

Fig. 4 illustrates the predictions of MonoScene, trained
on SemanticKITTI, on datasets with different camera se-
tups. We can see the increase in distortion as the camera
setups depart from the ones used during training. Further-
more, the domain gap (i.e. city, country, etc.) also plays an
important role. As MonoScene is trained on the mid-size
German city of Karlsruhe, with residential scenes and nar-
row roads, the gap is smaller with KITTI-360 having similar
scenes. The results on nuScenes and Cityscapes suffer both
from the camera setup changes and the large metropoli-
tan scenes (i.e. Stuttgart - Cityscapes; Singapore, Boston
- nuScenes) having wider streets.

in-FOV out-FOV Whole Scene

IoU 1 mloU 1 |IoU 1t mloU 1|IoU 4 mloU 1
LMSCNet'®b [12] |37.62 8.87 |25.36 548 |3441 8.17
3DSketch™ [4] [3224 7.82 [26.50 5.83 [33.30 7.50
AICNet' [8] 3569 875 [2579 5.61 |29.59 8.31
*JS3C-Net'®® [16]]42.22 11.29 2827 6.31 [38.98 10.31
MonoScene(ours) |39.13 12,78 |31.60 7.45 [37.12 11.50

* Uses pretrained semantic segmentation network.

Table 3. SemanticKITTI performance (validation set) on in-
/out-FOV and the Whole Scene. We report the performance on
the scenery inside (in-FOV), outside (out-FOV) camera FOV, and
considering all voxels (Whole Scene). MonoScene is best in most
cases, with in-FOV performance logically higher.
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Figure 2. Results on SemanticKITTI [1] (validation set). The input is shown left. Darker voxels represent the scenery outside the
viewing frustum (i.e. unseen by the image).
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Figure 3. Results on NYUv2 [14] (test set). The input is shown leftmost and the camera viewing frustum is shown in the ground truth
(rightmost).
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Figure 4. Domain gap and Camera effects. Outputs of MonoScene when trained on SemanticKITTI having horizontal FOV of 82°, and
tested on datasets with decreasing (left) or increasing (right) FOV. SemanticKITTI and KITTI-360 are recored in mid-size German city of
Karlsruhe while nuScenes and Cityscapes are from large metropolitan areas (e.g. Stuttgart - Cityscapes; Singapore, Boston - nuScenes)
whose streets are much wider, denser and have different landscapes.
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