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1. Global reference axis
Our landmark-based global reference systems are de-

fined by fixing an origin and an orthogonal 3D vectors basis.
A good land-mark should be retrievable from the ground
truth labels at training time, but should also be easy to iden-
tify by a human without ground truth labels at test time.

We choose the following four approaches:

Label Surf: The origin is defined as the center of mass
of the L1 tissue. The main axis is found by approximately
determining the integument tissue symmetry axis. This is
achieved by finding for each tissue in the integument (L2,
L3, L4, es, nu) the respective center of mass. Then, we use
least-square linear regression to find the best line interpolat-
ing the integument tissue. The second axis is found by find-
ing the line passing through fu tissue center of mass and per-
pendicular to the main axis. The third axis is computed by
taking the cross-product between the first and second axes.

Label Fu: The origin is defined as the center of mass of
the fu tissue. The global axes are computed as in the Label
Surf.

Es trivial: Here we use the Es tissue to fix an origin for
the reference system. It is usually easily identifiable by its
large size and central position. We set the reference system
origin to the Es center of mass. While for the axis, we use
the original orientation as acquired by the microscope.

Es PCA: The origin is the same as Es Trivial. But the
system axes are set to the PCA axes of the whole ovule.

Our python implementation can be found at:
https : / / github . com / hci - unihd / plant -
celltype / blob / main / plantcelltype /
features/cell_vector_features.py.

2. Growth and surface axis
To compute the local reference system, we designed two

simple heuristics. We estimate the surface axis of a cell by
averaging over directions corresponding to the edges con-
necting the cell to all neighbors which are closer to the sur-
face. These directions are defined as the edge surface nor-
mal direction.
The growth axes are found by looking for each cell the most
co-linear pair of neighboring cells.

The algorithms used to compute the surface axis and
growth axis are described in more detail respectively in Al-
gorithm 1 and Algorithm 2. Our python implementation can
be found at: https://github.com/hci-unihd/
plant-celltype/blob/main/plantcelltype/
utils/axis_transforms.py.

3. Features
We here report the results of additional experiments con-

ducted to identify the best feature homogenization strategy.
In Fig. 1, we tested the difference between different vector
representations. In Fig. 3 and Fig. 2, we tested the nor-
malizations for the graph features and the maximum value
to be used in our hops to surface feature. In Fig. 4 and
Fig. 5 we tested different normalization applied to respec-
tively morphological and angles features. Lastly, in Fig. 6
we tested the impact of using lengths measured in several
directions as features, similarly to [9]. An overview of all
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Algorithm 1 Compute Surface Axis
Require: node, edges ▷ Vectors containing: nodes ids, edges ids.
Require: hops ▷ Vectors containing: number of hops from each node to the surface.
Require: directions, bg ▷ Vector containing: edges directions (surface normal), background node id.

N← len(node)
surface-axis← zeros(N, 3) ▷ Initialize an array full of zeros.
for (i = 0, i = N, i++) do

if hopsi = 1 then ▷ I.e. node is on the organ surface.
e← find-edge(nodei, bg, edges) ▷ Find edge id between nodei/nodej .
surface-axisi ← directionse

else
neighborsi ← find-neighbors(nodei, edges) ▷ Find all nodes neighbors of nodei.
Ni, count← len(neighborsi), 0
for j = 0, j = Ni, j++ do ▷ Loop over the neighborhood.

if hopsj < hopsi then ▷ If neighbor is closer to surface.
e← find-edge(nodei, nodej , edges) ▷ Find edge id between nodei/nodej .
surface-axisi ← surface-axisi + directionse ▷ Average edges normal.
count = count + 1

end if
surface-axisi ← surface-axisi/count

end for
end if

end for

Algorithm 2 Compute Growth Axis
Require: node, edges ▷ Vectors containing: nodes ids, edges ids.
Require: coms, hops ▷ Vectors containing: nodes center of mass, number of hops from each node to the surface.

N← len(node)
growth-axis← zeros(N, 3) ▷ Initialize an array full of zeros.
for (i = 0, i = N, i++) do

Θmin ← 1
neighborsi ← find-neighbors(nodei, edges) ▷ Find all nodes neighbors of nodei.
Ni ← len(neighborsi)
for j = 0, j = Ni, j++ do ▷ Loop over all tuple (nodej , nodej) of distinct neighbors of nodei.

vectorij = get-vector(nodei, nodej , coms) ▷ Find vector connecting nodei/nodej center of masses.
for k = j + 1, k = Ni, k++ do

vectorik = get-vector(nodei, nodek, coms)
Θ = get-angle(vectorij , vectorik) ▷ Angle is measured as the normalized dot product between the two vectors.
if Θ < Θmin and hopsi = hopsj = hopsk then ▷ When the angle is minimum the cell are the most co-linear.

Θmin ← Θ
growth-axisi ← vectorij

end if
end for

end for
end for

features available in the CellTypeGraph benchmark is re-
ported in Tab. 1, Tab. 2. Our python implementation can
be found at: https://github.com/hci-unihd/
plant-celltype/tree/main/plantcelltype/
features

4. Grid search complete results

Experiment parameters setup is reported in Tab. 3.
The configuration files used to run our experiments can
be fount at: https://github.com/hci-unihd/
plant- celltype/tree/main/experiments/
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Feature Name Invariant Default Size Description

Center of mass ✓ 3 Cell center of mass represented in the global ref-
erence system, expressed in µm.

Center of mass / GRS Proj. 3 Angles between the cell center of mass and the
global reference system.

LRS axis 9 Growth axis, surface axis and third perpendicular
axis.

LRS orientations ✓ 18 Direction invariant growth axis, surface axis and
third perpendicular axis.

LRS / GRS Proj. ✓ ✓ 9 Angles between the LRS axis and the global ref-
erence system.

Growth/Surface axis angle ✓ ✓ 1 Angle between growth and surface axis.
Growth axis alignment ✓ ✓ 1 Angle between periclinial cell walls along pre-

dicted growth direction, measure how good is the
fit is.

Length LRS ✓ ✓ 3 Cell length along the LRS directions.

PCA axis 9 Principal component analysis axis.
PCA orientations ✓ 18 Direction invariant principal component analysis.
PCA / GRS Proj. ✓ ✓ 9 Angles between the PCA axis and the global ref-

erence system.
PCA explained variance ✓ ✓ 3 PCA axis explained variance.

Surface ✓ ✓ 1 Cell surface area in µm.
Volume ✓ ✓ 1 Cell volume in µm.
Lengths uniform samples 64 Cell length in uniform directions.

Hops to Surface ✓ ✓ 1 Shortest path length on the graph between a cell
and the surface. For this measure we ignore the
geo-localization of nodes, and consider all neigh-
bors one hop distant.

Degree Centrality ✓ ✓ 1 Degree centrality.
CFC centrality ✓ ✓ 1 Current-flow closeness centrality.

Table 1. Complete list of node features pre-computed in the CellTypeGraph.

Feature Name Invariant Default Size Description

Center of mass surface ✓ ✓ 3 Cell Surface (edge) center of mass represented in
the global reference system, expressed in µm.

Center of mass distance ✓ ✓ 1 Distance between two adjacent cell center of
mass.

Center of mass /GRS Proj. ✓ 3 Angles between two adjacent cell center of mass
direction and the global reference system.

LRS Proj. ✓ ✓ 3 Angles between local reference system in adjacent
cells.

Surface ✓ ✓ 1 Edge surface area in µm.

Table 2. Complete list of edge features pre-computed in the CellTypeGraph.

node_grid_search
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Model Optimizer Model Params. top-1 acc. class-avg. acc.

GIN [14] lr = 10−2 # feat = 64 0.714± 0.071 0.563± 0.136
wd = 10−5 # layers = 2

dropout = 0.1

GCN [6] lr = 10−2 # feat = 128 0.762± 0.043 0.617± 0.077
wd = 10−5 # layers = 2

dropout = 0.5

GAT [13] lr = 10−3 # feat = 256 0.824± 0.033 0.705± 0.084
wd = 0 # layers = 2

dropout = 0.5
heads = 3
concat. = True

GATv2 [2] lr = 10−3 # feat = 256 0.855± 0.041 0.757± 0.087
wd = 10−5 # layers = 2

dropout = 0.5
heads = 3
concat. = True

GraphSAGE [5] lr = 10−3 # feat = 128 0.859± 0.048 0.765± 0.093
wd == 10−5 # layers = 4

dropout = 0.1

GCNII [5] lr = 10−2 # feat = 128 0.863± 0.050 0.772± 0.100
wd = 10−5 # layers = 4

dropout = 0.0
share weight = False

Transf. GCN [10] lr = 10−3 # feat = 128 0.868± 0.045 0.779± 0.098
wd = 10−5 # layers = 2

dropout = 0.5
heads = 3
concat. = True

EdgeTransf. GCN [10] lr = 10−3 # feat = 128 0.868± 0.044 0.777± 0.098
wd = 0 # layers = 2

dropout = 0.5
heads = 5
concat. = True

DeeperGCN [8] lr = 10−3 # feat = 128 0.877± 0.050 0.796± 0.098
wd = 0 # layers = 32

dropout = 0.0

EdgesDeeperGCN [8] lr = 10−3 # feat = 128 0.878± 0.047 0.797± 0.095
wd = 10−5 # layers = 16

dropout = 0.0

Table 3. Best performing optimizer and model parameters according to the class-avg. accuracy.

5. Expert agreement

In order to highlights the most challenging aspect of our
CellTypeGraph Benchmark, we here report further analysis
of the expert biologist performance, see Fig. 7 and Fig. 8.

6. Data augmentation

Data augmentation is commonly used in machine learn-
ing to avoid overfitting in a small dataset and improve gen-
eralization. We tested the impact of two simple approaches
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Figure 1. Class-average accuracy comparison between different
vector features representations. Using the orientation instead of
axis resulted in a small but consistent improvement in perfor-
mance.

DeeperGCN TgGCN

0.4

0.5

0.6

0.7

0.8

0.9 Hops 2
Hops 3
Hops 4
Hops 5

Number of hops to Surface

C
la

ss
-a

ve
ra

ge
 A

cc
ur

ac
y

Figure 2. Class-average accuracy with varying maximum number
of hops. Hops to surface are intuitively closely related to the tissue
stratification L1-L4, but their relation loosen with depth. We tested
how important this feature is by clipping its value. From the results
one can see that the feature contribution saturates after three hops.

on our CellTypeGraph Benchmark. The first augmenta-
tion is to add Gaussian distributed noise to the node fea-
tures, while the second approach is to use random dropout
of edges in the cell adjacency graph, results are reported in
Fig. 9. Our preliminary results show a small effect of data
augmentation on the metrics, but more exhaustive experi-
mentation is necessary to draw more solid conclusions.

7. Baseline implementation details
In our baseline, we benchmark eight different graph neu-

ral network architectures. We report here the most salient
implementation details. For GCN [6], GraphSAGE, [5],
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Figure 3. Class-average accuracy between different graph feature
normalizations. One can see a slight accuracy improvement using
z-score normalization.

DeeperGCN GCN

0.4

0.5

0.6

0.7

0.8

0.9 Quantile Clip + Zscore
Zscore
Quantile Clip
Base

Morphological Features

C
la

ss
-a

ve
ra

ge
 A

cc
ur

ac
y

Figure 4. Class-average accuracy comparison between different
morphological features normalizations. One can see a slight accu-
racy improvement using z-score normalization.
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Figure 5. Class-average accuracy between different angles nor-
malization. Angles are naturally normalized between -1 and 1, in
our experiments the z-score had no significant impact.

GIN [14], GCNII [3], and DeeperGCN [7, 8]; we followed
the pytorch geometric implementation [4]. In all the afore-
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Figure 6. Class-average accuracy between: baseline features only,
and baseline features plus additional lengths features. In our ex-
periments the additional lengths showed no significant contribu-
tion to the accuracy.
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Figure 7. Class-average accuracy obtained by an expert biologist.
The early stages pose the most substantial challenges, although the
cause of such high variance can be attributed to the smaller number
of cells for each specimen.

mentioned architectures the convolutions block are com-
posed as follows: Graph Convolution → Relu activation
[1] → normalization → Dropout [11]. The number of
convolutions blocks used is an hyper parameter. In addi-
tion in DeeperGCN and GCNII and addition linear layer
is added before the first graph convolution layer and after
the last graph convolution layer. While for the remaining
architectures GAT [13], GATv2 [2], and TransformerGCN
[10, 12], we used graph convolutions as implemented in [4]
but with some minor differences in the convolution block
layout: Graph Convolution → normalization → Relu ac-
tivation [1] → Dropout [11]. All source implementation
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Figure 8. Per-class accuracy obtained by an expert biologist. In
late stages the highest variability sources are the cell types p-ch
and p-ch, while for early stages the highest variability is posed by
the cell type L1 to L4.
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Figure 9. Comparison of the class-average accuracy for various
combinations of network architecture, data augmentation tech-
nique, and parameters. The impact of data augmentation is neg-
ligible in all our experiments. Nevertheless, adjacency dropout
(edge drop probability = 0.5) consistently improves accuracy for
the DeeperGCN model.

are released at https://github.com/hci-unihd/
plant-celltype/blob/main/plantcelltype/
graphnn/graph_models.py.
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