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1. Network Architecture
We use pretrained SPyNet [8] as our flow network. The

number of residual blocks for the initial feature extraction
is set to 5, and the number of residual blocks for each prop-
agation branch is set to 7. The feature channel is set to 64.

The architecture of our second-order deformable align-
ment is highly similar to the first-order counterpart (Fig.
3 in the main paper). The only difference is that the pre-
aligned features and optical flows from different timesteps
are concatenated, and passed to the offset estimation mod-
ule Co and mask estimation module Cm. Their architectures
are detailed in Table 1. We set the DCN kernel size to 3
and the number of deformable groups to 16. Codes will be
released.

2. Experimental Settings
Datasets. Two widely-used datasets are adopted for train-
ing: REDS [7] and Vimeo-90K [10]. For REDS, follow-
ing BasicVSR [1], we use REDS41 as our test set and
REDSval42 as our validation set. The remaining clips are
used for training. We use Vid4 [5], UDM10 [11], and
Vimeo-90K-T [10] as test sets along with Vimeo-90K.
Degradations. All models are tested with 4× down-
sampling using two degradations – Bicubic (BI) and
Blur Downsampling (BD). For BI, the MATLAB function
imresize is used for downsampling. For BD, we blur the
ground-truth by a Gaussian filter with σ=1.6, followed by
a subsampling every four pixels.
Training Settings. We adopt Adam optimizer [3] and Co-
sine Annealing scheme [6]. When trained on REDS, the ini-
tial learning rate of the main network and the flow network
are set to 1×10−4 and 2.5×10−5, respectively. The total
number of iterations is 600K, and the weights of the flow
network are fixed during the first 5,000 iterations. The batch
size is 8 and the patch size of input LR frames is 64×64. We

1Clips 000, 011, 015, 020 of REDS training set.
2Clips 000, 001, 006, 017 of REDS validation set.

Table 1. Architectures of Co and Cm. The two modules share
the first six layers. They can be implemented as a stack of con-
volutions followed by a channel-splitting. The arguments in the
convolution layer are input channels, output channels, and kernel
size, respectively.

Layer Co Cm

1. conv(196, 64, 3)
2. LeakyReLU(0.1)
3. conv(64, 64, 3)
4. LeakyReLU(0.1)
5. conv(64, 64, 3)
6. LeakyReLU(0.1)
7. conv(64, 288, 3) conv(64, 144, 3)

use Charbonnier loss [2] since it better handles outliers and
improves the performance over the conventional ℓ2-loss [4].
During training, 30 LR frames are used as inputs. Since
Vimeo-90K contains only seven frames per sequence, net-
works trained solely on Vimeo-90K may not be able to cap-
ture long-term dependencies. Therefore, we initialize the
model using the weights trained on REDS when trained on
Vimeo-90K. The number of finetune iterations is 300K.
Test Settings. We take the full video sequence as inputs to
explore information from all video frames for restoration.

3. Limitations of Recurrent Framework

In this section, we will discuss the limitations of Ba-
sicVSR++ and more generally the recurrent framework, to
provide insights for future works.

Long Training Time. Since BasicVSR++ and other recur-
rent networks are intended to exploit long-term information,
they are usually trained with a long sequence, such as 15 or
30 frames. As a result, when compared to sliding-window
methods such as EDVR [9], the training time of recurrent
VSR networks is longer.

Large Memory Footprint. In bidirectional recurrent net-
works, intermediate features of the entire sequence has to
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be cached. Therefore, the memory footprint would increase
with the length of sequence. Nevertheless, this can be ame-
liorated with some hardware workarounds such as caching
the features in CPU.

4. Qualitative Comparisons
In this section, we provide additional qualitative compar-

isons on REDS4 [7], UDM10 [11], Vimeo-90K [10], and
Vid4 [5]. From the examples, we see that BasicVSR++ is
able to restore the fine details, leading to plausible results.
A video demo is also provided in the submitted zip file.
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Figure 1. Qualitative comparison on REDS4 [9].
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Figure 2. Qualitative comparison on UDM10 [11].
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Figure 3. Qualitative comparison on Vimeo-90K-T [10].
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Figure 4. Qualitative comparison on Vid4 [5].


