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In this supplement, we first provide additional experi-

ments (Sec. 1) and visual results (Sec. 2). We follow with

details of our implementation (Sec. 3), including further de-

scriptions of model architecture and training process, as

well as hyperparameters. We discuss experiment details

(Sec. 4), such as datasets and baselines, and further explana-

tions for experiments such as inversion. Lastly, we consider

artifacts (Sec. 5) that may be targets of future work. We

encourage readers to view the accompanying supplemental

video, which contains additional visual results, including a

live demonstration of real-time synthesis.

1. Additional experiments

1.1. Analyzing pose/facial expression correlation in
FFHQ

Fig. 1 plots the likelihood a subject from FFHQ [17] is

smiling (measured by [38]), against head yaw (computed

by [9]). The plot indicates that individuals facing towards

the camera are more likely to be smiling than are individuals

who are facing away from the camera. An intuitive explana-

tion for this phenomenon is that people who are knowingly

being photographed, as in portrait images, are more likely

to be smiling than people who are photographed candidly.

Left uncompensated for, this correlation between pose

and facial expressions incentivizes “expression warping”,

where the expressions of synthesized faces shift as we move

the camera. We propose dual discrimination (Section 4.3 of

the main paper) and generator pose conditioning (Section

4.4 of the main paper) to reduce such expression warping.

1.2. COLMAP reconstruction

To further validate the multi-view consistency of our

method, we employ COLMAP [32, 33] to reconstruct a

*Equal contribution.
†Part of the work was done during an internship at NVIDIA.

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

yaw (radians)

0.0

0.2

0.4

0.6

0.8

1.0

p
e
rc
e
n
ta
g
e
s
m
il
e
s

Figure 1. We plot the probability of smiling against head yaw an-

gle, as measured by [38]. People looking at the camera are more

likely to be smiling than people angled away, indicating a correla-

tion between scene appearance and camera pose.

Figure 2. COLMAP [32, 33] reconstruction of 128 frames of syn-

thesized video (top) which followed an oval trajectory. The result-

ing dense, well-defined point cloud (bottom) is indicative of highly

multi-view-consistent rendering.

point-cloud of a synthesized video sequence (Fig. 2). We

reconstruct a video sequence of 128 frames, taken from an

oval trajectory similar to the camera paths shown in the sup-

plemental video. We use COLMAP’s “automatic” recon-

struction, without specifying camera parameters. The re-



sulting point cloud is dense and well-defined, indicating that

our 3D GAN produces highly multi-view-consistent render-

ings.

1.3. Regularizing generator pose conditioning

Figure 3. Naively applying generator pose conditioning results in

a degenerate solution because the generator is always aware of the

location of the rendering camera. Such an approach produces rea-

sonable renderings when taken from the “intended” viewing angle,

(i.e. the camera pose the generator was conditioned on). However,

if we freeze the conditioning information and move the camera at

inference, it is clear that the model has learned to produce “bill-

boards” angled towards the known location of the camera.

As described in Section 4.4 of the main paper, we regu-

larize generator pose conditioning by randomly swapping

the conditioning pose of the generator with another ran-

dom pose with 50% probability. Fig. 3 shows the result

of training a model with generator pose conditioning but

without any swapping regularization—the generator always

receives, as a conditioning input, the true pose of the ren-

dering camera. The model learns a degenerate solution in

which it creates a “billboard” angled towards the rendering

camera. We prevent this degenerate solution by randomly

swapping the conditioning camera pose with an alternative

pose sampled from the dataset pose distribution. For models

shown, we swap the conditioning vector with 100% proba-

bility at the start of training; the swapping probability is

linearly decayed to 50% over the first 1M images. For the

remainder of training, we maintain 50% swapping probabil-

ity.

1.4. Robustness to imprecise camera poses

Our method expects a dataset in which each image is

labeled with an approximate camera pose, in order to en-

able sampling camera poses from the dataset distribution

and discriminator pose conditioning. While such labelling

can be easily performed with pre-trained pose extractors on

humans [9] and cats [20], extracting accurate poses may be

difficult for some datasets. This section evaluates reliance

on discriminator pose conditioning and on accurate cam-

era poses. We train five additional models on FFHQ 2562:

a “baseline” configuration without discriminator pose con-

ditioning, and four discriminator-pose-conditioned models

where camera poses are corrupted with increasing levels of

Figure 4. In order to gauge robustness to the accuracy of the sup-

plied camera poses, we compare a baseline without discriminator

pose conditioning against discriminator-pose-conditioned models

where camera extrinsics are corrupted by noise. Without discrimi-

nator pose conditioning, the model learns a degenerate solution in

which heads are drawn as a texture flattened onto a plane. Even

highly imprecise extrinsics (e.g. camera poses corrupted by three

standard deviations of noise) are capable of resolving this degen-

erate solution and allow recovery of accurate 3D shapes.

random noise. We calculate the 4×4 standard deviation ma-

trix, σ, by taking the standard deviation across the dataset

of ground-truth 4 × 4 camera pose matrices. We train four

models with “imprecise” camera poses: (1 σ, 2 σ, 3 σ, 4 σ)

where the input camera poses matrices are corrupted with

1, 2, 3, and 4 standard deviations of Gaussian noise, respec-

tively. We train these five ablations on FFHQ 2562 with

a shortened training curriculum of 4M images, in order to

save computational resources.

Fig. 4 shows the results of this experiment. Without dis-

criminator pose conditioning, the model falls into a degen-



FFHQ Cats Cars

FID↓ KID↓ ID↑ Depth↓ Pose↓ FID↓ KID↓ FID↓ KID↓

GIRAFFE 128
2 — — — — — — — 27.3 1.703

GIRAFFE 256
2 31.5 1.992 0.64 0.94 .089 16.1 2.723 — —

π-GAN 128
2 29.9 3.573 0.67 0.44 .021 16.0 1.492 17.3 0.932

Lift. SG 256
2 29.8 — 0.58 0.40 .023 — — — —

Ours 1282 — — — — — — — 2.75 0.097

Ours 2562 4.8 0.149 0.76 0.31 .005 3.88 0.091 — —

Ours 5122 4.7 0.132 0.77 0.39 .005 2.77† 0.041† — —

Table 1. Quantitative evaluation using FID, KID×100, identity consistency (ID), depth accuracy, and

pose accuracy for FFHQ [17] and FID, KID×100 for AFHQv2 Cats [7,16] and ShapeNet Cars [6,35].

Labeled is the image resolution of training and evaluation. † Trained with adaptive discriminator

augmentation [15].

erate solution in which it renders textures on a flat plane,

without properly capturing the 3D shape of scenes. Provid-

ing even very imprecise camera poses is enough to break

this tendency; conditioning the discriminator on camera

poses distorted by three standard deviations of Gaussian

noise still produces accurate 3D shapes. With extreme

noise (e.g. four standard deviations), some scenes main-

tain the correct 3D structure while others are flattened onto

the plane. Our results indicate that while our method re-

quires additional information to prevent collapse, only very

weak supervision is necessary. Future work may examine

this tendency further and discover ways to prevent this un-

desirable behavior without requiring images to be labelled

with poses.

1.5. Extrapolation to steep camera angles

Fig. 5 provides a visual comparison of our method

against baselines for generating views from steep camera

poses. We note that the FFHQ [17] dataset is primarily

composed of front-facing images—few images depict faces

from extreme yaw angles, and even fewer images depict

faces from extreme pitch angles. Nevertheless, reasonable

extrapolation to the edges of the pose distribution is a desir-

able quality and indicates reliance on a robust 3D represen-

tation.

Lifting StyleGAN [34], which represents scenes as a

textured mesh, demonstrates consistent rendering quality.

However the steep camera angles reveal inaccurate 3D ge-

ometry (e.g. foreshortened faces) learned by the method.

π-GAN [5], reasonably extrapolates to steep angles but ex-

hibits visible quality degradation at the edges of the pose

distribution. GIRAFFE [29], being highly reliant on view-

inconsistent convolutions, has difficulty reproducing angles

that are rarely seen in the dataset. If we force GIRAFFE

to extrapolate beyond the camera poses sampled at train-

ing (e.g. the leftmost and rightmost images of Fig. 5b), we

receive degraded, view-inconsistent images rather than ren-

derings from steeper angles. The problem is amplified for

pitch (Fig. 5a) because the dataset’s pitch range is even nar-

rower.

Our method, despite also using 2D convolutions, is less

reliant on view-inconsistent convolutions for considering

the placement of features in the final image. By utilizing

an expressive 3D representation as a “scaffold”, our method

provides more reasonable extrapolation to rare views in

both pitch and yaw than methods that more strongly depend

on image-space convolutions for image synthesis, such as

GIRAFFE [29].

1.6. Additional quantitative results

Table 1 is an expanded version of Table 2 of the main

manuscript that provides additional quantitative metrics, in-

cluding Kernel Inception Distance [2] for all datasets and

image quality evaluations for ShapeNet Cars. Strong rela-

tive performance on Cars, a dataset in which camera poses

are distributed uniformly about the sphere, is evidence that

our method is not restricted to face-forward datasets like

FFHQ [17] and AFHQv2 [7, 16].

2. Additional visual results

Style mixing, in shapes. Fig. 6 shows the underlying

shapes of the style mixing [17] examples in Fig. 8 of

the main manuscript. While mixed examples inherit most

of their shape structure from the modulations of the back-

bone’s low-resolution layers, the modulations of the high-

resolution layers can influence fine details in the shape, such

as eye regions and hair patterns. The results were obtained

from a model trained without style-mixing regularization.

Additional single image 3D reconstructions. Fig. 7 pro-

vides additional 3D reconstructions of single test images

through Pivotal Tuning Inversion (PTI) [31] of a model

trained on FFHQ 5122. A pipeline for high-fidelity, single-

image reconstruction of faces that does not require explicit

3D ground-truth training data opens the door for many



(a) Extrapolation to steep pitch angles.

(b) Extrapolation to steep yaw angles.

Figure 5. We compare methods in their extrapolation to steep camera viewing angles. La-

belled is the percentile for camera pitch or yaw. A yaw angle in the 96th percentile means

96% of training poses are less steep, i.e. 4% of training poses are beyond the given pose.



Figure 6. Style-mixing [16–18] shapes from a model trained on

FFHQ 512
2, without truncation. Aligns with Fig. 8 of the main

manuscript, which shows color renderings of the same seeds. The

result illustrates that while a mixed example inherits the majority

of its structure from its “coarse” input (i.e. modulations of layers

0-6), the “fine” input (i.e. modulations of layers 7-13) can influ-

ence the more delicate details of the shape (e.g. eye regions, hair

patterns), in addition to having much control over the overall col-

ors in rendered images.

Figure 7. Additional single-view 3D reconstructions of test images

demonstrate a use for our generator’s learned prior over facial fea-

tures.

promising applications, such as photo-to-avatar creation.

Shapenet Cars. Fig. 8 contains uncurated renderings

from random camera poses for models trained with

ShapeNet Cars [6, 35]. This experiment serves as a demon-

stration that our method is capable of operating successfully

on datasets that include camera poses that span the entire

360◦ camera azimuth and 180◦ camera elevation distribu-

tions, unlike 2.5D GANs [34], which are intended for face-

forward datasets.

Additional selected examples synthesized with AFHQv2

Cats. Fig. 9 shows renderings and shapes for selected ex-

amples, synthesized by our method trained on AFHQv2

Cats [7, 16] 5122.

Uncurated examples synthesized with AFHQv2 Cats.

Fig. 10 provides uncurated examples of cats produced by

GIRAFFE [29], π-GAN [5], and our method, trained at im-

age rsolutions of 2562, 1282, and 5122, respectively.

Uncurated examples synthesized with FFHQ. Fig. 11

provides uncurated examples of faces produced by our

method, trained with FFHQ [17] 5122. We apply trunca-

tion [4, 17, 25], with ψ = 0.5.

Latent code interpolation. Fig. 12 provides linear inter-

polations between latent codes for selected examples pro-

duced by our method trained on FFHQ 5122. Our result

illustrates that our 3D GAN inherits the well-behaved la-

tent space of the StyleGAN2 [18] backbone, which enables

smooth interpolations in both color renderings and underly-

ing shapes.

Additional selected examples synthesized with FFHQ

Fig. 13 depicts renderings and shapes for selected exam-

ples, synthesized by our method trained on FFHQ 5122.

3. Implementation details

We implemented our 3D GAN framework on top of the

official PyTorch implementation of StyleGAN2, an updated

version of which is available at https://github.com/

NVlabs/stylegan3. Most of our training parameters

are identical to those of StyleGAN2 [18], including the use

of equalized learning rates for the trainable parameters [14],

a minibatch standard deviation layer at the end of the dis-

criminator [14], exponential moving average of the genera-

tor weights, and a non-saturating logistic loss [12] with R1

regularization [26].

Two-stage training. In order to save computational re-

sources, we perform the majority of the training at a neural

rendering resolution of 642, before gradually stepping the

resolution up to 1282. Note that the final image resolution

remains fixed throughout training (e.g. 2562 or 5122). We

implement this simply by bilinearly resizing the raw neu-

ral rendering IRGB to 1282 before it is operated on by the

super-resolution module. Thus, the super-resolution mod-

ule always receives a 1282-sized feature map as an input,

regardless of the actual neural rendering resolution. In con-

trast to previous progressive growing strategies [5, 14] that

double the resolution in a single step, we gradually increase

https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3


Figure 8. Qualitative comparison of uncurated examples of cars. All methods are sampled with truncation [4, 17, 25], using ψ = 0.7.

the neural rendering resolution, pixel-by-pixel, over 1 mil-

lion images, i.e., (642, 652, 662, ..., 1262, 1272, 1282). We

continue training with the resolution fixed at 1282 for an

additional 1.5 million images, for a total of 2.5M iterations

of fine-tuning. This two-stage training procedure provides

a roughly 2× speed-up versus training from scratch at full

resolution and produces similar results to training at full

neural rendering resolution from scratch.

Backbone. Our backbone (i.e., StyleGAN2 generator)

follows the implementation of [18], with a mapping net-

work of 8 hidden layers. For all of our experiments (regard-

less of final image resolution), the backbone operates at a

resolution of 2562. We modify the output convolutions such

that they produce a 96-channel output feature image, which

we reshape into three planes, each of shape 256×256×32.

Unlike approaches that require pre-trained 2D image GANs

[34], we do not utilize pre-trained StyleGAN2 checkpoints

for the backbone; the entire pipeline is trained end-to-end.



Figure 9. Curated examples from a model trained on AFHQv2 [7, 16] 5122.

For large datasets, such as FFHQ [17] and ShapeNet Cars

[6, 35], we train from scratch with random initialization;

for small datasets, such as AFHQv2 [7, 16], we follow pre-

vailing methodology [15] by fine-tuning from a checkpoint

trained on a larger dataset.

Decoder and volume rendering. Our decoder is imple-

mented as an MLP with a single hidden layer of 64 hidden

units and uses the softplus activation function. The decoder

takes as input a 32-channel aggregated feature vector; it pro-

duces a 33-channel vector that we split into a scalar density

prediction and a 32-channel feature. We use neural volume

rendering [27] of features [29], with two-pass importance

sampling. For FFHQ [17] and AFHQv2 [7, 16], we use 48

uniformly-spaced and 48 importance samples per ray; for

ShapeNet Cars, we use 64 uniformly-spaced and 64 impor-

tance samples per ray. When rendering videos that feature

thin surfaces, we found it beneficial to increase the samples

per ray during inference to reduce flicker.

Super-resolution. We implement our super-resolution

model with two ‘blocks’ of StyleGAN2’s modulated convo-

lutions [18], with noise inputs disabled. The blocks contain

convolutions of channel-depth 128 and 64, respectively.



Figure 10. Uncurated examples of cats, for GIRAFFE [29] 2562, π-GAN 128
2, and our method 512

2. All methods are sampled with

truncation [4, 17, 25], using ψ = 0.7.

Discriminator. Our discriminator is a StyleGAN2 [18]

with two modifications. First, to enable dual discrimination,

we adjust the input layer to accept six-channel input images,

rather than 3-channel input images. Fig. 14 provides a dia-

gram that illustrates the creation of these six-channel inputs,

for both real and generated images. Second, we condition

the discriminator on the camera parameters of the incoming

image to help prevent degenerate shape solutions; we follow

the class-conditional discriminator modifications of [15] to

inject this information.

Mixed Precision. To speed up training, we use a similar

mixed-precision methodology as [15]. We use FP16 in the

four highest resolution blocks of the discriminator and in

both blocks of our super-resolution module. We do not use

FP16 in our generator backbone.

R1 Regularization. We use R1 regularization [26] with

γ = 1 for all datasets and resolutions, except for ShapeNet

Cars, where we use γ = 0.1. Regularization strengths were

informally chosen based on values that have shown success

with previous methods [15, 18].

Density Regularization. Further experiments, conducted

after our initial submission, suggested that additional regu-

larization over the estimated density field reduced the preva-

lence of undesirable seams and other shape artifacts. Sim-

ilar to the total variation regularization used in previous

work [23], our density regularization encourages smooth-

ness of the density field. For each generated scene in the

batch, we randomly sample points x in the volume and also

sample additional ‘perturbed’ points that are offset with a

small amount Gaussian noise δx. Our density regulariza-

tion loss is an L2 loss that minimizes the difference between

the estimated densities σ(x) and σ(x + δx). We apply our



Figure 11. Images and geometry for seeds 0-31, synthesized using a model trained on FFHQ [17] 5122. Sampled with truncation [17],

using ψ = 0.5.

density regularization over 1000 pairs of randomly sampled

points every four training iterations.

Training. We train all models with a batch size of 32. We

use a discriminator learning rate of 0.002 and a generator

learning rate of 0.0025. Following [16], we blur images

as they enter the discriminator, gradually reducing the blur

amount over the first 200K images. Unlike [18], we train

without style-mixing regularization.

Using the two-stage training discussed previously, we

train at a resolution of 642 for 25M images and at 1282 for

an additional 2.5M images. Using a neural rendering reso-

lution of 642, our 3D GAN framework takes ∼24 seconds

to train on 1000 images (24 s/kimg) on 8 Tesla V100 GPUs;

this increases to 46 s/kimg at a neural rendering resolution

of 1282. For reference, StyleGAN3-R [16] achieves train-

ing rates of 20 s/kimg on similar hardware.

Our total training time on 8 Tesla V100 GPUs is on the

order of 8.5 days (7 days of 642 training, plus 1.5 days of

1282 fine-tuning), compared to 6 days on similar hardware

for StyleGAN3-R.

Inference-time depth samples. We use neural volume

rendering [27] with two-pass importance sampling to render

feature images from our tri-plane representation. We found

that increasing the number of samples per ray at inference

time can reduce unwanted flickering when rendering videos

that feature thin objects such as eye glasses. For clips shown

in the supplemental video, we double both the number of

coarse samples (from 48 to 96) and the number of fine sam-

ples (from 48 to 96), bringing the total number of depth

samples per ray to 192. Increasing the number of samples

per ray incurs a penalty to the rendering speed. When using

96 total depth samples per ray, frame rates are reduced to

approximately 24 frames per second with tri-plane caching

– down from 36 frames per second when using the default

48 samples. Images shown in the main manuscript were

synthesized without increasing the number of depth sam-

ples along each ray.

AFHQv2. Following [15], we fine-tune from FFHQ-

trained models to achieve optimum performance on Cats.

Beginning from a checkpoint trained on FFHQ, we train for

6.2M images at a neural rendering resolution of 642; and for

an additional 2.6M images, while fine-tuning the neural ren-

dering resolution to 1282. Because π-GAN and GIRAFFE

were not designed with the benefits of adaptive discrimina-

tor augmentation (ADA) [15], we also do not use ADA for

our method at 2562, in an effort to keep comparisons across

methods fair. We use adaptive discriminator augmentation



Figure 12. Linear interpolations between latent codes, showing renderings and shapes.

with its default settings, for our method only at 5122 .

4. Experiment details

4.1. Baselines

π-GAN [5] is a 3D-aware GAN that relies upon a FiLM-

conditioned MLP with periodic activation functions for

camera-controllable synthesis. We utilized the official code

(https://github.com/marcoamonteiro/pi-

GAN) and trained until convergence with the parameters rec-

ommended for analogous datasets.

GIRAFFE [29] is a 3D-aware GAN that incorporates a

compositional 3D scene representation to enable control-

lable synthesis. We utilized the official code (https:

//github.com/autonomousvision/giraffe)

and trained until convergence with the parameters recom-

mended for analogous datasets.

Lifting StyleGAN [34] is a method for disentangling

and lifting a pre-trained StyleGAN2 image generator to

3D-aware face generation. The original Lifting StyleGAN

manuscript reports results on a slightly tighter crop of

FFHQ than we used. Because we had difficulty match-

ing the quality of Lifting StyleGAN’s pre-trained model

when we trained it from scratch on our less-cropped dataset,

we instead used their official pre-trained model for their

tighter crops and the FID score reported in their manuscript.

We utilized the offical code, found here: (https://

github.com/seasonSH/LiftedGAN).

StyleGAN2 is a style-based GAN that achieves state-

https://github.com/marcoamonteiro/pi-GAN
https://github.com/marcoamonteiro/pi-GAN
https://github.com/autonomousvision/giraffe
https://github.com/autonomousvision/giraffe
https://github.com/seasonSH/LiftedGAN
https://github.com/seasonSH/LiftedGAN


Figure 13. Additional selected examples, from a model trained on FFHQ [17] 5122.

of-the-art image quality for 2D image synthesis and fea-

tures a well-behaved latent space that enables image ma-

nipulation. We obtained a pre-trained checkpoint for Style-

GAN2 on FFHQ 5122 from the collection of official mod-

els (https://catalog.ngc.nvidia.com/orgs/

nvidia/teams/research/models/stylegan2).

Following the recommended tuning of [15], we trained

both StyleGAN2 config F and the 512 × 512 config

from [15], sweeping R1 [26] regularization strength, γ =
{0.2, 0.5, 1, 2, 5, 10, 20}. The best result for AFHQv2 was

obtained with StyleGAN2 config F, after training for 10M

images at γ = 1.

4.2. Dataset Details

FFHQ We prepare our dataset by starting with the ”in-

the-wild” version of the FFHQ dataset [17], which is

composed of uncropped, original PNG images of people

sourced from Flickr. We use an off-the-shelf face detection

and pose-extraction pipeline [9] to both identify the face re-

gion and label the image with a pose. We crop the images

to roughly the same size as the original FFHQ dataset.

We assume fixed camera intrinsics across the entire

dataset, with a focal length of 4.26× image width, equiv-

alent to a standard portrait lens. We prune a small number

of images that resisted face detection; our final dataset con-

tains 69957 images. We augment the dataset with horizontal

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/stylegan2
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/stylegan2
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Figure 14. In dual-discrimination, we discriminate on a six-channel concatenation of the final image and the raw neural rendering, in order

to maintain consistency between high-resolution final images and view-consistent (but low resolution) neural renderings. This diagram

illustrates how we obtain a six-channel discriminator input tensor for both real and fake images. Our generator produces both a 512
2 final

rendering (I+
RGB

) as well as the (1282) raw neural rendering (IRGB). The raw rendering, IRGB is the first three channels of the 32-channel

rendered features, IF . We create a six-channel discriminator input by upsampling the raw image to 512
2 and concatenating it with the

final image to form a (512 × 512 × 6) discriminator input tensor. For real images, we extract a 512
2 real image from the dataset and

downsample it to the same size as IRGB to obtain an analogue for IRGB . We then upsample this image back to 512
2 and concatenate it

with the original image to form a (512× 512× 6) discriminator input tensor. The downsample-then-upsample operation has the effect of

blurring the original image.

flips.

AFHQv2 We used the AFHQv2 dataset [16], which is

a higher-quality version of the original AFHQ dataset [7].

AFHQv2 provides closeups for animal faces including cats,

dogs, and wildlife. We use the ‘cats’ split, which con-

tains approximately 5000 images, for our experiments. As

with FFHQ, we assume fixed camera intrinsics across the

dataset; for simplicity, we use identical intrinsics to FFHQ.

Camera poses were extracted via landmark detection [20]

and an open-source Perspective-n-Point algorithm [3]. We

augment the dataset with horizontal flips.

ShapeNet Cars For additional validation, we compare

methods on ShapeNet Cars [6, 35] to evaluate performance

on a dataset that contains views from all angles. We adopted

the dataset and setup from [35], which is composed of 1282

resolution renderings of synthetic cars, each labelled with

camera parameters. The dataset contains 2457 unique cars;

each car is rendered from 50 views randomly sampled from

the entire sphere. We use the known camera parameters

for each image and do not augment the dataset with image

space augmentations.



4.3. Single scene overfitting.

To illustrate the effectiveness of our architecture, we

evaluate the relative performance of the tri-plane 3D rep-

resentation against a comparable voxel-based hybrid repre-

sentation and Mip-NeRF [1] on the Family scene of Tanks

& Temples [19] dataset as desribed in Section 3 of the main

manuscript. We use the pre-processed images, as well as the

training/test split, of [22]. We use 512 uniformly-spaced

depth samples and 256 importance samples per ray and a

ray batch size of 6400. The tri-planes are treated as learn-

able parameters of shape 3×48×512×512. The dense voxel

parameters were chosen to optimize quality for comparable

parameter count as the tri-planes; the voxel features are of

shape 18×128×128×128. Both voxel and tri-plane hybrid

representations are coupled with two-layer, 128 hidden unit

decoders with Fourier feature embeddings [36]. We train

voxel and cube representations for 200K iterations; we train

Mip-NeRF for the recommended 1M iterations.

4.4. Pivotal tuning inversion.

We use off-the-shelf face detection [9] to extract

appropriately-sized crops and camera extrinsics from test

images and we resize each cropped image to 5122. We

follow Pivotal Tuning Inversion (PTI) [31], optimizing the

latent code for 500 iterations, followed by fine-tuning the

generator weights for an additional 500 iterations.

For inversion of grayscale images, we convert the gener-

ator’s 3-channel, RGB renderings to perceived luminance,

Y , before computing image distance loss during optimiza-

tion. This allows the generator’s prior to colorize the render-

ings. To compute single-channel luminance from 3-channel

RGB images, we use Y = 0.299R + 0.587G + 0.114B.

For grayscale optimization, we use 400 latent code inver-

sion steps and 250 generator fine-tuning steps.

4.5. Evaluation Metrics

FID and KID. We compute Fréchet Inception Distance

(FID) [13] and Kernel Inception Distance (KID) [2] image

quality metrics between 50k generated images and all train-

ing images using the implementation provided in the Style-

GAN3 [16] codebase.

Geometry. We follow a similar procedure to [34] in the

evaluation of geometry. We generate 1024 images and

depth maps from random poses that match the dataset pose

distribution. With the application of a pre-trained 3D face

reconstruction model [9], we generate a “pseudo” ground-

truth depth map for each generated image. Next we limit

both the generated depth maps and “pseudo” ground-truth

depth maps to the facial regions as defined by the recon-

struction model. Finally, we normalize all depth maps to

zero mean, unit variance and calculate the L2 distance be-

tween them.

Multi-view consistency. We evaluate multi-view consis-

tency and face identity preservation for models trained on

FFHQ [17] by measuring ArcFace [8] cosine similarity. For

each method, we generate 1024 random faces and render

two views of each face from poses randomly selected from

the training dataset pose distribution. For each image pair,

we measure facial identity similarity [8] and compute the

mean score.

Pose accuracy. We evaluate pose accuracy with the help

of a pre-trained face reconstruction model [9]. With [9], we

detect pitch, yaw, and roll from 1024 generated images then

compute L2 loss against the ground truth poses to determine

each model’s pose drift.

Runtime. We evaluate runtime for each model by calcu-

lating the average framerate over a 400 frame sequence. We

process frames consecutively, i.e., with batch size 1. In or-

der to give each method a best-case-scenario, we ignore op-

erations such as copying rendered frames from GPU to CPU

and saving files to disk.

FACS estimation In Section 5.2 of the main paper, we

quantitatively measure the effect of dual discrimination and

generator pose conditioning at preserving facial expressions

across multi-view face videos. To evaluate facial expres-

sions, we employ a proprietary facial tracker that mea-

sures detailed movement of sub-regions of the face in terms

of Facial Action Coding System (FACS) [10] coefficients.

Specifically, our facial tracker measures all 53 FACS blend-

shape coefficients defined in Li et al. [21] and we compared

the variability in the ‘mouthSmile L’ and ‘mouthSmile R’

blendshape coefficients across the different videos.

4.6. Visualization of Geometry

To visualize shapes, we sample the volume to obtain a

5123 cube of density values and extract the surface of the

scene as a mesh using Marching Cubes [24]. We found

that a levelset between 0 and 10 generally yielded visu-

ally appealing results. Renderings of shapes shown in this

manuscript were generated using ChimeraX [11].

5. Discussion

5.1. Shape artifacts

Despite significant improvements in the quality of the 3D

geometry compared to previous methods, our synthesized

shapes are not free from artifacts, which are visible in geom-

etry renderings throughout the main paper and supplement



(e.g. Fig. 11, Fig. 13). Sunken eye sockets allow the illu-

sion of eyes that follow the viewing camera, even when the

geometry and neural renderings are view-consistent; such

“hollow face illusions” have demonstrated similar effects in

the physical world. Similarly, deep creases near the cor-

ners of mouths enable the creation of “view-inconsistent”

effects that in fact are faithful to the underlying shapes. Fu-

ture work that incorporates stronger dataset priors, e.g. that

eyeballs are convex, may help resolve these artifacts.

While our method produces more-detailed eyeglasses

than previous methods, it tends to produce “goggles”—the

sides of the eyeglasses are opaque where there should be

empty space. Future neural rendering methods that can

accurately model lens refraction may enable more faithful

reconstruction of eyeglasses and other objects that contain

transparent elements.

In some shapes and renderings generated by our method,

a seam is visible between the face and the rest of the head.

While we find the optional density regularization in Sec.

3 helps reduce such artifacts, we hypothesize that recent

hybrid-SDF rendering solutions [30, 37, 39], which have

shown promising results in robust geometry recovery from

images, may yield improved shapes with fewer artifacts.

In the interests of simplicity, we model the scene with a

single 3D representation, without any explicit background

handling. Consequently, the generator learns to represent

backgrounds of images with textured surfaces fused to fore-

ground objects. Future work that models backgrounds with

a separate 3D representation [28, 29, 40] may enable isola-

tion of foreground objects.
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