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A. MaskGIT’s Performance on Image Reconstruction
In Sec 4 of the main paper, we primarily evaluate the performance of MaskGIT on class-conditional image generation.

Here, we study its performance on image reconstruction. We first randomly sample input mask M with a mask ratio r of the
visual tokens masked out, and then run MaskGIT’s iterative decoding algorithm to reconstruct images. Figure 1 shows the
PSNR and LPIPS [15] of the reconstructed samples as functions of r, whereas Figure 2 visualizes this process with r ranging
from 95% to 75%.
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Figure 1. Reconstruction quality and diversity measured by PSNR and LPIPS [15].

We observe that MaskGIT can reconstruct holistic information (e.g. pose and shape of the foreground objects) even with a
very high percentage (e.g. 95%) of tokens masked out. More importantly, we find that there exists an inflection point around
90%: as shown in Figure 1, both reconstruction quality and consistency improve drastically as the mask ratio decreases until
it hits 90%, beyond which further improvements are slowed down. This observation is corroborated by the large jump in the
visual similarity between reconstruction samples and the original image from 95% to 90% in Figure 2 (e.g. the fence in front
of the tiger and the car’s color are consistently captured once the mask ratio is below 90%).
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Figure 2. Examples of MaskGIT on Image Reconstruction. MaskGIT takes in masked tokens extracted from original images (row one)
using random input masks (row two, with unknown tokens marked in light gray), and outputs reconstructed images (row three). We then
randomly sample 100 masks with the same mask ratio, and illustrate the median of the 100 reconstructed samples in row four.

In other words, visual tokens are highly redundant. Only a very small portion (e.g. 10%) is essential for a holistic re-
construction, while the remaining ones only benefit the recovery of the appearance or finer details. This echos the intuition
behind our masking design laid out in Sec 3.3 that the prediction of the first few tokens is key to image generation. Sim-
ilar observations on the spatial redundancy of images are discussed in a concurrent paper MAE [6]. In their work, they
find that masking a high proportion of the input image yields a nontrivial and meaningful self-supervisory task for image
representation learning.

B. Additional Class-conditional Image Generation Results
In this section, we report additional results on class-conditional image generation.
In Table 1, we report Precision and Recall scores calculated using Inception features [11]. In contrast to the VGG [10]

feature-based scores, which we report in th main paper for a more direct comparison with prior work [4, 7], we find that
the Inception feature-based scores are more consistent with our qualitative observations that VQGAN’s samples are more
diverse than BigGAN’s. Under both measures, MaskGIT ’s recall scores outperform those of BigGAN and VQGAN. We
also report CAS evaluated on classifiers trained without augmentation from RandAugment [3]. Consistent with our main
results, MaskGIT outperforms BigGAN and our baseline VQGAN by a large margin.

Finally, we show a few comparisons of the class-conditional samples generated by MaskGIT with the samples generated
by BigGAN-deep and VQVAE-2 in Figure 3, 4, and 5.

Model Inception-Prec Ò Inception-Rec Ò CAS ˆ100 Ò

Top-1 (73.1) Top-5 (91.5)

BigGAN-deep [1] 0.82 0.27 42.65 65.92
VQ-GAN˚ 0.61 0.47 47.50 68.90
MaskGIT (Ours) 0.78 0.50 58.20 79.65

Table 1. More quantitative comparison with BigGAN-deep and our baseline VQGAN on Ima-
geNet 256ˆ256. ˚ denotes the model we train with the same architecture and setup with ours.
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Figure 3. More diversity comparisons between BigGAN-deep with truncation 1.0, VQVAE-2 [9], and our proposed method MaskGIT
on ImageNet. : represents extracted samples from the paper.
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Figure 4. More diversity comparisons between BigGAN-deep with truncation 1.0, VQVAE-2 [9], and our proposed method MaskGIT
on ImageNet. : represents extracted samples from the paper.
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Figure 5. More Diversity Comparisons among BigGAN-deep with truncation 1.0, VQVAE-2 [9], and our proposed method MaskGIT on
ImageNet. : represents extracted samples from the paper.



C. Class-conditional Image Editing
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Figure 6. More Examples of Class-conditional Image Editing. In each column, the bottom images are synthesized using the image on
the top, ImageNet class labels on the left, and a bounding box of the main object downsampled into latent space (as shown in the second
row).



D. Image Outpainting For Panorama Synthesis

Input MaskGIT (Ours)

Figure 7. More Samples of Horizontal Image Extrapolation (from 512ˆ256 to 512ˆ2304). The synthesized ”panoramas” are created by
repeatedly applying MaskGIT’s outpainting abilities horizontally in both directions.



E. Image Outpainting Comparisons with SOTA Transformer-based Approaches
In Figure 8 and 9, we show a few outpainting comparisons to ImageGPT [2] and VQGAN [5]. In each set of images,

we show the groundtruth (left), extrapolated samples using only the top half of the groundtruth (middle), and extrapolated
samples using only the bottom half of the groundtruth (right).

While ImageGPT can only run on a maximum resolution of 192 ˆ 192, VQGAN and MaskGIT can perform on higher
resolutions by taking advantage of tokenization and thus achieve higher fidelity than ImageGPT’s. Since ImageGPT and
VQGAN are both autoregressive approaches, their models can only handle outpainting in one direction. In comparison,
MaskGIT is more flexible and can outpaint in arbitrary directions.

Groundtruth —— Outpaint bottom 50% —— —— Outpaint top 50% ——

Im
ag

eG
PT

[2
]

V
Q

G
A

N
[5

]
M

as
kG

IT
(O

ur
s)

Im
ag

eG
PT

[2
]

V
Q

G
A

N
[5

]
M

as
kG

IT
(O

ur
s)

Figure 8. Outpainting comparisons with the pixel-based approach ImageGPT [2] and the transformer-based approach VQGAN [5].
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Figure 9. Outpainting comparisons with the pixel-based approach ImageGPT [2] and the transformer-based approach VQGAN [5].



F. Image Inpainting and Outpainting Comparisons with SOTA GAN-based Methods
In Sec 4.3 of the main paper, we show quantitative comparison of MaskGIT’s performance on inpainting and outpainting

tasks with several GAN-based methods dedicated to these tasks. In this section, we show more qualitative comparisons with
state-of-the-art image completion methods in Figure 10 and Figure 11.

Compared to prior GAN-based methods, we find that MaskGIT demonstrates a stronger capability of completing structures
coherently, and that MaskGIT’s samples contain fewer artifacts. In Figure 11, MaskGIT completes the bridge in row two and
the building in the second to last row, which all GAN methods struggle to do in comparison.

Input DeepFillv2 [14] HiFill [13] CoModGAN [16] MaskGIT (Ours) Groundtruth

Figure 10. More visual comparisons on image inpainting on Places2 [17] with state-of-the-art GAN methods.



In addition, we compare with the state-of-the-art image completion method CoModGAN. The quantitative scores in-
cluding FID and IS of both methods are close: MaskGIT achieves better FID of 6.78,and IS of 11.69 on outpainting
50% to the right (vs CoModGAN’s FID=7.67,IS=9.09), and slightly worse FID on inpainting with a 50% ˆ 50% mask
(FID=7.92,IS=22.95 vs FID=7.13, IS=21.82).

In addition, we compare with CoModGAN on image completion tasks with large masking ratios, i.e. conditioning on the
center 50%ˆ50% and the center 31.25%ˆ31.25% respectively, which are challenging cases for traditional GANs. Examples
are shown in Fig 12.

Input Boundless [12] InfinityGAN [8]✳ CoModGAN MaskGIT (Ours) Groundtruth

Figure 11. More visual comparisons on image outpainting. with state-of-the-art GAN methods. ✳ samples are graciously provided by
the authors.
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Figure 12. Visual comparisons of outpainting with CoModGAN [16] on large outpainting mask.



G. Limitations and Failure Cases
In Figure 13, we show several limitations and failure cases of our approach. (A) and (B) are examples of semantic and color

shifts in MaskGIT’s outpainting results. Due to its limited attention size, MaskGIT may ”forget” the synthesized semantics
or color from one end when it’s outpainting the other end. (C) and (D) show cases where our approach may sometimes ignore
or modify objects on the boundary when applied to outpainting and inpainting. (E) showcases MaskGIT’s failure mode in
which it causes oversmoothing or creates undesired artifacts on complex structures such as human faces, text and symmetric
objects. The improvement for these circumstances remains future work.
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Figure 13. Limitations and Failure Cases.
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