
Appendices: Robust outlier detection by de-
biasing VAE likelihoods

Appendix A: VAE architecture and training
All experiments were performed using Tensorflow 2 and
Tensorflow Probability libraries. We employed a convolu-
tional VAE architecture that follows the DCGAN [18] struc-
ture (Table 1), nearly identical with that of [25]. We used
the Adam optimizer [6] with a learning rate of 5e-4 for train-
ing all of our models. Each model was trained for 1000
epochs with a batch size of 64, and the checkpoint with
best validation performance based on negative log likeli-
hood was used for reporting results. We used the Xavier
uniform initializer (default in Tensorflow 2) for initializing
network weights.

For reporting results based on the bias-corrected log like-
lihood (BC-LL score) we used a VAE with a latent dimen-
sion (nz) of size 20. To examine the robustness of our reme-
dies to the VAE architecture, we also trained four additional
VAEs with latent dimensions of size 40, 60, 80, and 100 (see
Appendix E.1, Fig. 7). The same architecture was used for
training both grayscale and natural image VAEs, with two
differences (grayscale: nf = 32, nc = 1; natural: nf = 64, nc
= 3). Log likelihoods were estimated using the importance
weighted lower bound (n=100 samples) [2].

Table 1. VAE architecture. nc: number of channels; nf: number
of filters; nz: number of latent dimensions; BN: batch normal-
ization; Conv: convolution layer; DeConv: deconvolution layer;
ReLU: rectified linear unit

Encoder Decoder

Input image of shape 32 ⇥ 32 ⇥ nc Input latent code, reshape to 1 ⇥ 1 ⇥ nz
4 ⇥ 4 Convnf Stride=2, BN, ReLU 4 ⇥ 4 DeConv4 ⇥ nf Stride=1, BN, ReLU
4 ⇥ 4 Conv2 ⇥ nf Stride=2, BN, ReLU 4 ⇥ 4 DeConv2 ⇥ nf Stride=2, BN, ReLU
4 ⇥ 4 Conv4 ⇥ nf Stride=2, BN, ReLU 4 ⇥ 4 DeConv nf Stride=2, BN, ReLU
4 ⇥ 4 Conv2 ⇥ nz Stride=1 4 ⇥ 4 DeConvnc Stride=2

Appendix B: Bias correction for Bernoulli de-
coder

For a VAE decoder with a Bernoulli visible distribution,
the negative reconstruction error is given by:

log p✓(x|z) = log pB(x; x̂✓(z))

=

DX

i=1

xi log x̂i + (1� xi) log(1� x̂i)

where xi is the pixel value of the i

th pixel in the input sam-
ple and x̂i (or x̂i(z)) is the corresponding pixel value in the
image reconstructed by the decoder, and z is the latent rep-
resentation corresponding to the input image (see [8] their
Appendix C.1).

The negative reconstruction error for perfect reconstruc-
tion is simply calculated by setting x̂i = xi, as:

log pB(x;x) =

DX

i=1

xi log xi + (1� xi) log(1� xi)

Appendix C: Data sources and pre-processing

Data sources. We used Tensorflow Datasets2 for all
datasets except Sign Language MNIST, CompCars and
GTSRB. We fetched the Sign Language MNIST3, Com-
pCars4 surveillance-nature images and GTSRB5 datasets
from their respective official sources. For the EMNIST
dataset, we selected only the “Letters” split. To generate
noise patches, we used uniform random noise in range [0,
1], sampled independently across pixels and channels.

Data pre-processing and splits For both grayscale
and natural image datasets, we resized all images to 32 ⇥
32 pixels before VAE training and evaluation. For natural
image datasets, we employed the cropped versions of
SVHN and CelebA (default option in Tensorflow Datasets),
such that the central object (numbers or faces, respectively)
were approximately centered in each image. In addition,
we preprocessed the images using “contrast stretching”,
where specified, with the method described in Section 3.3.
For all datasets, we reserved 10% for the training data
for validation (generated twice for two train-val splits,
independently). Evaluation was performed with the test
splits of each dataset, as indicated in their respective
sources. The specific datasets and the number of training
and testing samples, and representative exemplars are
shown in Table 2.

Appendix D: Performance metrics and com-
peting methods

Computing performance metrics. We computed three
performance metrics for outlier detection [19]: i) area un-
der the receiver-operating-characteristic (AUROC), which
represents the area under the curve obtained by plotting
the true-positive rate versus the false-positive rate; ii) area
under the precision-recall curve (AUPRC), which similarly
represents the area under the curve obtained by plotting the
precision versus the recall values, and iii) the false-positive
rate at 80% true positive rate (FPR@80%TPR). Higher val-
ues of the first two metrics indicate better outlier detection,

2
https://www.tensorflow.org/datasets

3
https : / / www . kaggle . com / datamunge / sign -

language-mnist

4
http://mmlab.ie.cuhk.edu.hk/datasets/comp_

cars/

5
https://benchmark.ini.rub.de/gtsrb_dataset.

html

https://www.tensorflow.org/datasets
https://www.kaggle.com/datamunge/sign-language-mnist
https://www.kaggle.com/datamunge/sign-language-mnist
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/
https://benchmark.ini.rub.de/gtsrb_dataset.html
https://benchmark.ini.rub.de/gtsrb_dataset.html

Table 2. Dataset details. Details of datasets used for outlier detection with VAE likelihoods.

Dataset Type Exemplars N-train (N-val) N-test License

MNIST Grayscale 54000 (6000) 10000 CC BY-SA 3.0

Fashion-MNIST Grayscale 54000 (6000) 10000 MIT

EMNIST-Letters Grayscale 79920 (8880) 14800 CC BY-SA 3.0

Sign Language MNIST Grayscale 24720 (2735) 7172 CC0: Public Domain

Gray-Noise Grayscale - 10000 -

SVHN Color 65932 (7325) 26032 Custom (non-commercial) 1

CelebA Color 146493 (16277) 19962 Custom (non-commercial) 2

CompCars Color 28034 (3114) 13333 Custom (non-commercial) 3

GTSRB Color 35289 (3920) 12630 CC0: Public Domain

CIFAR-10 Color 45000 (5000) 10000 MIT

Color-Noise Color - 10000 -

1
http://ufldl.stanford.edu/housenumbers/

2
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

3
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/

and vice versa for the third metric. All metrics were com-
puted with the scikit-learn library.

For Figures 4 and 5, as well as supplementary results re-
ported in Appendix E, we computed these metrics with an
all-versus-all comparison, by comparing each score distri-
bution (e.g. BC-LL) for the test split of the inlier dataset
against the respective score distribution for the test split of
the outlier dataset (test versus test).
Implementing competing methods. For implementing
competing methods, we used the same VAE architecture as
in our paper, except that the number of hidden dimensions
was set to 100 to match the likelihood regret paper [25].
Other details are specified below.

• Input complexity (IC). We computed input complexity by
subtracting from the vanilla (uncorrected) log likelihood
the “complexity” estimate L(x) for each sample com-
puted as |C(x)|/d, where the string of bits C(x) was ob-
tained with the PNG compressor (d is the dimensionality
of x). Log likelihoods were computed with the categori-
cal visible distribution.

• Likelihood ratio (LRat). We trained a standard VAE and a
background model using the noise-corruption procedure
described in [19] with the mutation factor set to µ = 0.3
for grayscale image VAEs and µ = 0.1 for natural image

VAEs. We also applied a large weight decay (� = 100), as
suggested by the authors. Log likelihoods were computed
with the categorical visible distribution, as in the original
study.

• Likelihood regret (LReg). We computed the likelihood
regret score by quantifying the improvement in the likeli-
hood for each sample by retraining the encoder for 100
epochs using the implementation provided by the au-
thors [25]. Log likelihoods were computed with the cate-
gorical visible distribution, as in the original study.

• Watanabe-Akaike Information Criterion (WAIC). WAIC
was computed with the formula E✓[log p✓(x)] �
Var✓[log p✓(x)], using the average log likelihood and
variance across the ensemble of six VAEs. Log likeli-
hoods were computed with a continuous Bernoulli visible
distribution; the original study [3] used a Bernoulli visible
distribution.

For Figures 4 and 5 that compare the performance of
these other scores with our scores, AUROC values were
computed by comparing each score distribution for the test
split of the inlier dataset against the score distribution for
test split of the outlier dataset (test versus test). The VAEs
for competing approaches were trained 3 times with differ-

http://ufldl.stanford.edu/housenumbers/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/

Figure 7. Robustness of outlier detection performance to VAE architecture. (Top row) AUROC variation with the number of latent
dimensions for the four grayscale image VAEs, based on uncorrected log likelihoods (blue, left y-axis), bias-corrected log likelihoods
(orange, left y-axis) and their difference (dashed green, right y-axis). AUROC values were averaged across all (n=4) outlier test datasets.
(Bottom row) Same as in the top panel, but for five natural image VAEs, with AUROC values averaged across n=5 outlier test datasets.

(a) (b)

Figure 8. Additional metrics for outlier detection: Grayscale datasets. (a) Area under the precision recall curve (AUPRC) (higher is
better). (b) False-positive rate (FPR) at a true-positive rate (TPR) of 80% (lower is better). Other conventions are the same as in Figure 4.

ent random initializations; we report average AUROC val-
ues across 3 runs.

Appendix E: Supplementary results on outlier
detection
E.1 Outlier detection performance with varying
numbers of VAE latent dimensions

We computed outlier detection AUROC for VAEs
trained with different numbers of latent dimensions (nz).

(a) (b)

Figure 9. Additional metrics for outlier detection: Natural image datasets. Same as in Figures 8a and 8b, but showing additional
metrics for outlier detection, (a) AUPRC and (b) FPR at 80%TPR based on natural image VAE likelihoods. Other conventions are the
same as in Figure 8.

AUROC values remained more or less constant, or declined
marginally with nz (Fig. 7, blue). In addition, in all cases
bias correction improved AUROC values (Fig. 7, orange
versus blue).

E.2 Grayscale image datasets: Additional perfor-
mance metrics

In addition to AUROC (Fig. 4), we computed AUPRC
and FPR at 80% TPR for outlier detection with the
grayscale VAEs with the bias corrected likelihoods (BC-
LL). AUPRC typically improved (Fig. 8a) and FPR de-
creased (Fig. 8b) for BC-LL scores (orange symbols) com-
pared to uncorrected likelihoods (blue symbols).

E.3 Natural image datasets: Additional perfor-
mance metrics

In addition to AUROC (Fig. 5), we computed AUPRC
and FPR at 80% TPR for outlier detection with the natu-
ral image VAEs. AUPRC typically improved (Fig. 9a) and
FPR decreased (Fig. 9b) for BC-LL scores (orange sym-
bols) compared to uncorrected likelihoods (blue symbols).
As with the AUROC metric (Fig. 5), outlier detection was
generally poor with the CIFAR10 VAE.

E.4 Effect of contrast normalization on outlier de-
tection

(a)
(b)

Figure 10. Effect of contrast stretching on image statistics. (a)
Representative images from the Fashion-MNIST (top) and CelebA
(bottom) datasets before (top row in each sub-panel) and after (bot-
tom row in each sub-panel) contrast normalization (stretching). (b)
Distributions of mean per-channel variance for the natural image
datasets show greater overlap after (bottom), as compared to be-
fore (top), contrast stretching.

(a) (b)

Figure 11. Effect of contrast normalization on outlier detection: Grayscale datasets. Outlier detection results using (a) continuous
Bernoulli and (b) Categorical VAE likelihoods trained on grayscale image datasets. We report AUROC values computed with no contrast
normalization (BC-LL (no CS), brown symbols), with contrast stretching applied only at test time (CS (test only) + BC-LL, pink symbols),
with contrast stretching applied at both train and test time (CS (pct-5) + BC-LL) and with adaptive histogram equalization instead of
percentile-based contrast stretching (CS (adhisteq) + BC-LL, magenta symbols), all with bias correction. Blue symbols: AUROC based
on uncorrected likelihoods. We use adaptive (local) histogram equalization (adhisteq) for grayscale images because global histogram
equalization produced unnatural variations in image contrast. Other conventions are the same as in Figure 4.

E.5 Outlier detection with milder perturbations

We tested the efficacy of bias correction to detect milder
corruptions to the data (distribution shifts) at test time.
We used continuous Bernoulli VAEs trained on multiple
grayscale and natural image datasets. At test time, we cor-
rupted ID images with four noise types – Gaussian noise,
impulse noise, shot noise and speckle noise, applied with
varying degrees of severity – following the procedure de-
scribed in [5]. We computed AUROC values for near-OOD
detection with the original images from the ID test sets
as ID samples and their noise-corrupted variants as OOD
samples, for both grayscale (Fig. 13a) and natural image
(Fig. 13b) datasets. Bias correction (CS(pct-5) + BC-LL)
improved outlier detection performance in most cases, typ-
ically in a manner that increased with noise severity level.

E.6 Augmented training baseline

As a baseline, we asked whether training each VAE using
augmented samples, with varying contrasts and intensities,
would improve outlier detection. We augmented the train-
ing samples by varying the pixel intensity uniformly across
the image (up to ±75 pixel units), as well as by varying con-
trast using percentile-based contrast stretching (up to 10%).

We trained continuous Bernoulli and categorical VAEs on
the augmented training sets for all of the four grayscale and
five natural image datasets. We then computed AUROC
values for OOD detection on the original test sets (with-
out augmentation); we report the results as a difference in
AUROC values relative to those obtained with vanilla VAE
likelihoods. In general, augmented training either did not
improve, or marginally worsened, AUROC for outlier de-
tection, relative to the vanilla likelihoods (Fig. 14, blue).
By contrast, bias correction (CS(pct-5) + BC-LL) yielded
significant improvements over vanilla likelihoods in nearly
all cases (Fig. 14, orange).

E.7 Effect of preprocessing with ZCA whitening

We experimented with ZCA whitening, as an alternative
to percentile based contrast stretching. The ZCA whiten-
ing transform was computed and applied for each image,
to normalize per channel variance and to decorrelate val-
ues across the three color channels. We trained continu-
ous Bernoulli VAEs on ZCA-whitened images and com-
puted outlier detection AUROCs also on whitened images
at test time, followed by bias correction. In general, ZCA
whitening yielded outlier detection performance compara-
ble with percentile-based contrast stretching for grayscale

(a) (b)

Figure 12. Effect of contrast normalization on outlier detection: Natural image datasets. Outlier detection results using (a) continuous
Bernoulli and (b) Categorical VAE likelihoods trained on natural image datasets. Magenta symbols (CS (histeq) + BC-LL): AUROC
values computed with (global) histogram equalization instead of percentile-based contrast stretching. Other conventions are the same as in
Figure 11.

(a)

(b)

Figure 13. Outlier detection with milder perturbations: (a) AU-
ROC values for near-OOD detection with four different types of
noise – (from left to right) Gaussian, Impulse, Shot and Speckle
– at 5 different levels of severity [5]. Values averaged across the
four grayscale datasets for each noise type and severity level. (b)
Same as in (a) but near-OOD AUROC values averaged across the
five natural image datasets.

images (Table 3) but worse than contrast stretching for nat-
ural image datasets (Table 4).

Table 3. ZCA+BC-LL AUROC values for VAEs trained with
grayscale image datasets. Columns indicate training datasets (ID)
and rows indicate test datasets (OOD). (MN - MNIST, FM - Fash-
ion MNIST, EM - EMNIST, SL - SignLang. MNIST)

MN 50 100 97 100

FM 100 50 99 100

EM 88 100 50 100

SL 100 42 100 50

Noise 100 100 100 100

OOD " \ ID ! MN FM EM SL

Table 4. ZCA+BC-LL AUROC values for VAEs trained with nat-
ural image datasets. Columns indicate training datasets (ID) and
rows indicate test datasets (OOD). (SV - SVHN, CA - CelebA, CC
- CompCars, GT - GTSRB, CF - CIFAR10.)

SV 50 95 100 98 85

CA 34 50 99 75 49

CC 5 39 50 38 17

GT 38 72 99 50 53

CF 39 73 99 79 50

Noise 100 99 100 100 100

OOD " \ ID ! SV CA CC GT CF

(a) (b)

Figure 14. Augmented training baseline: Change in AUROC upon training the VAEs using augmented samples, with varying intensities
and contrasts. Change in AUROC was measured relative to the vanilla log likelihoods AUROC (blue symbols) for (a) grayscale and (b)
natural image datasets. Change in AUROC with bias correction (orange symbols) is also shown for each train-test pair, for reference. Other
conventions are the same as in Figures 4 and 5.

Appendix F: Bias in alternative visible distri-
butions

F.1 Bias in the Categorical visible distribution

In Figure 15, we revisit the empirical bias in the log like-
lihood of a CelebA VAE with Categorical visible distribu-
tion, for images with different uniform pixel intensities. We
plot the VAE decoder categorical distribution outputs for 5
different target pixel intensity values across the range (0-
255), by averaging across all occurrences of the respective
pixel value in the CelebA test set (Fig. 15). The U-shaped
log likelihood profile can be explained by the discrepancy
in the entropy of these distributions across different pixel
values. For example, for target pixel values close to full
black or full white, the VAE decoder concentrates proba-
bility mass in the proximity of the target pixel value, with
the output having narrower peaks and smaller overall en-
tropy. For target values closer to the middle of the range
(grays), the probability mass is more dispersed around the
target pixel value, and has wider peaks and larger overall
entropy in the output. These discrepancies in the output
entropy across different pixel intensities arise from “edge
effects”: probability mass cannot be assigned to values <0
or >255, and the PMF has to sum to one for all target pixel

outputs, resulting in accumulation of probability mass at the
edges.

Figure 15. Empirical bias arising from pixel intensities for a
Categorical VAE. (Red curve) Uncorrected log likelihoods for
uniform pixel intensity images. (Insets, black) PMF plots: Cat-
egorical distribution outputs for specific target pixel values (from
left to right) 25, 76, 127, 178 and 229

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16. Bias correction improves outlier detection for the Bernoulli VAE. Conventions are same as in Figure 2, but for a VAE trained
with the Bernoulli visible distribution.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17. Bias correction improves outlier detection for the truncated Gaussian VAE. Conventions are same as in Figure 2, but for a
VAE trained with the truncated Gaussian visible distribution.

F.2 Bias correction with alternative visible distribu-
tions

We report outlier detection results for Bernoulli (Fig. 16)
and truncated Gaussian (Fig. 17) VAEs. To correct for the
intensity bias in the Bernoulli VAE, we use the analytical
approach discussed in Section 3.1 and Appendix B. For
truncated Gaussian VAEs, we used the algorithmic correc-
tion discussed in Section 3.2 and Algorithm 1. For all VAEs,
the images were contrast stretched during both training and
testing phases.

Appendix G: Outlier detection with the
CIFAR-10 VAE

Our BC-LL scores approached or exceeded state-of-the-
art accuracies for outlier detection with multiple grayscale
and natural image datasets (Figs. 4 and 5). Nonetheless,
VAEs trained on the CIFAR-10 dataset yielded relatively
low AUROC values with bias correction, ranging from 37-
66 (Fig. 5, last column, all outlier datasets except Noise).
Interestingly, other approaches based on VAE likelihoods
also performed relatively poorly with this dataset (Fig. 5,
last column)

We hypothesized that this failure could be due to the het-

erogeneity of the CIFAR-10 dataset: this dataset comprises
10 different categories of images, which are both visually
and semantically unrelated to each other (e.g. airplanes,
deer, frogs, ships). We tested this hypothesis by training
four category-specific VAEs with images from four CIFAR-
10 image categories (Airplane, Ship, Frog and Deer) and
tested them against the other datasets. Outlier detection
performance improved with bias correction for the VAEs
trained on specific categories of images (Fig. 18, last 4
columns) relative to the one trained with all categories
of images (Fig. 18, first column). On average, category-
specific outlier detection with the BC-LL score improved
by between 6-20 points (Fig. 18, last row) for the individual
categories compared to the VAE trained on all categories.

These results suggest that the heterogeneity in CIFAR-10
categories was, in part, responsible for overall poor outlier
detection with this dataset. Yet, even with these category-
specific CIFAR-10 VAEs, outlier detection performance did
not reach the superlative levels of accuracy that it did with
the other natural image datasets (e.g. Fig. 5, CompCars,
GTSRB).

Why do VAE likelihoods fail when other classifier-based
outlier detection methods (e.g. [11]) succeed? To answer
this question, we note that there is a key difference between
VAEs and deep CNN classifiers. Deep CNN classifiers
transform the input image into a spatially-invariant (typi-
cally translation-invariant) feature representation, on which
a classification decision must be made. Even though the
VAE encoder employs a CNN that achieves such a trans-
formation, the VAE decoder needs to reconstruct the entire
image pixel-for-pixel. Consequently, VAEs can ill-afford
to ignore spatial relationships among the features and their
positions relative to a coordinate frame that is locked to the
“edge” of the image. In other words, to optimize its ob-
jective, a VAE must care not only about “what” features
are present in an image, it must also encode “where” these
features are positioned relative to each other and, impor-
tantly, relative to the image’s bounding box. We propose
that datasets in which such spatial relationships do not oc-
cur consistently (e.g. CIFAR-10) are particularly unsuited
for outlier detection with VAEs.

We test this prediction with a simple set of experiments.
We plotted the bias corrected likelihoods for representative
VAEs (GTSRB, CelebA, CompCars), each following one
simple affine transformation: a) x/y translation (uniform
random shift of ±0-10 pixels along both x and y direc-
tions) (Fig. 19, top left, GTSRB), b) reflection about the
horizontal axis (Fig. 19, top right, CelebA) or c) rotation
by 90 degrees anti-clockwise (Fig. 19, bottom, CompCars).
Each of these affine operations sufficed to hoodwink the
VAEs into treating their, respective, inlier images as out-
liers: the VAEs consistently assigned lower likelihoods for
these translated, reflected or rotated in-distribution images

Figure 18. Outlier detection with specific CIFAR-10 categories.
AUROC values for outlier detection based on VAEs trained with
specific categories of images in the CIFAR-10 dataset. (Leftmost
to rightmost columns) VAEs trained with all CIFAR-10 image cat-
egories, Airplane images, Ship images, Frog images and Deer im-
ages. Each row is an outlier dataset. Other conventions are the
same as in Figure 5.

(Fig. 19, orange distributions), as compared to their original
counterparts (Fig. 19, blue distributions). This was partic-
ularly surprising for the case of perturbation by translation,
to which the encoder CNN typically learns invariance. In
sum, even though all image features were exactly (or nearly)
identical between the original and affine transformed im-
ages, VAE outlier detection failed because perturbed image
features were in novel spatial positions relative to the edge
of the image.

We discuss a few possibilities to overcome this limita-
tion. One solution is to train the VAE, not directly on nat-
ural images, but after transforming them into a spatially-
invariant “semantic” feature representation. Indeed, a re-
cent study [9] attempted precisely this experiment with deep
generative (Flow) models using features from a pretrained
EfficientNet model, and showed that such features enabled
robust outlier detection, even with the CIFAR-10 dataset.
A second possibility is to perturb the output [5] and de-
velop reconstruction error metrics that are invariant to these
perturbations in the input data. These remedies could en-

Figure 19. VAE likelihoods following affine transformations to
input data. (Top Left) GTSRB VAE likelihoods (bias corrected)
for the original images (blue distribution) or for the images fol-
lowing small, random wrap-around x/y translations (orange dis-
tribution). (Top Right) CelebA VAE likelihoods (bias corrected)
for the original images (blue distribution) or for the images flipped
vertically (orange distribution). (Bottom) CompCars VAE likeli-
hoods (bias corrected) for the original images (blue distribution) or
for the images rotated by 90 degrees anti-clockwise (orange distri-
bution).

able VAEs to be employed in dynamic real-world settings
where objects of interest may not be stationary relative to
the edge of the bounding frame, for example, outlier detec-
tion in video data.

	. Introduction
	. The challenge of outlier detection with VAE likelihoods
	. De-biasing VAE likelihoods
	. Analytical correction for intensity bias
	. Algorithmic correction for intensity bias
	. Correction for contrast bias: Normalization

	. Experiments
	. De-biased likelihoods improve outlier detection
	. Comparison with competing approaches

	. Limitations and Conclusions

