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In this supplemental material, we discuss an alternative
framework of learning 3PSDF (Section 1), use 3PSDF to
model functions or manifolds (Section 2), provide addi-
tional implementation details (Section 3), network structure
for each experiment (Section 4), comparison between our
proposed 3PSDF and TSDF (Section 5), and more results
(Section 6).

1. Alternative Learning Framework
In addition to 3-way classification, 3PSDF can be

learned using an alternative framework that combines bi-
nary classification and regression. Specifically, the binary
classification branch learns to classify the space into nan
and non-nan regions, where the non-nan region forms a
valid narrow band for extracting surface as demonstrated
in Figure 2(b) as shown in the main paper. The regression
branch strives to regress a continuous SDF in the narrow-
band region as generated by the classification branch. For-
mally, we formulate this alternative framework as follows:

ΦC(p,x) : R3 ×X 7→ [0, 1], (1)

ΨR(p,x) = SDF (p). (2)

In particular, the classification branch ΦC consumes a
3D query point p and its corresponding observation x and
predicts the probability of the query point locating in the
non-nan region; the regression branch ΦR directly infers
the signed distance of p as defined in Equation (3) in the
main paper.

Surface extraction. The framework based on binary clas-
sification and regression requires training of two branches,
which can be implemented either using two heads of a back-
bone network or two independent networks. Once the net-
works are trained, the sampling points that are classified as
nan points by the classification branch are assigned with nan
value. The rest points are assigned with continuous SDF
distance using the predictions of the regression branch. The
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Figure 1. Comparisons of two ways of learning 3PSDF.
Quantitative comparisons of shape reconstruction, Mixamo:
0.32:0.31(CD); 0.944:0.950(F-score); MGN: 0.07:0.07(CD);
0.991:0.993(F-score). Note all numbers are reported in format of
(3-way cls. : bin. cls.+reg.).

resulting 3PSDF field can be directly converted into mesh
using the Marching Cubes (MC) algorithm with the iso-
value set to 0. Same as 3-way classification, after MC com-
putation, we only need to remove all the nan vertices and
faces generated by the null cubes. The remaining vertices
and faces serve as the meshing result.

1.1. Comparisons with 3-way Classification

We provide in-depth comparisons between the two can-
didate learning frameworks: binary classification + regres-
sion (BR) v.s. 3-way classification (3C) in this section.
Specifically, we evaluate both methods in the task of shape
reconstruction and point cloud completion.

Shape reconstruction. We use the same experiment set-
tings with that of the main paper for evaluating the two
candidate frameworks. Both methods are validated us-
ing two datasets that contain non-watertight open surfaces:
MGN [3] and Mixamo [1].

We show both the qualitative and quantitative compar-
isons in Figure 1. While the two methods are trained using
the same data, the BR framework can generate smoother re-
construction compared to that of 3C method, thanks to its
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Figure 2. Comparisons of point cloud completion trained on watertight shapes by using two candidate learning frameworks of 3PSDF:
binary classification (bin. cls.)+regression (reg.) and 3-way classification (cls.). For the results of BR, we also show the results generated
from the two branches.

continuous SDF output. This is also reflected in the quanti-
tative measurements, where BR can achieve comparable or
even better results.

Figure 3. We overlay the reconstruction results of the classifica-
tion and regression branches under the BR framework as shown in
Figure 2. The classification results are highlighted in orange while
the regression results are marked with blue. The misalignment of
the two branches’ results leads to the incomplete reconstruction in
Figure 2.

Chamfer-L2

3K 300
BR 0.312 1.025
3C 0.112 0.595

Chamfer-L2

10K 3K
BR 0.095 0.314
3C 0.071 0.258

Table 1. Left: results of point cloud completion for closed water-
tight cars from 3000 and 300 points. Right: results of point cloud
completion for unprocessed cars from 10000 and 3000 points.
Chamfer distance is reported in ×10−4.

Reconstruction from point cloud. We also validate the
performance of both candidate frameworks in the task of
surface reconstruction from sparse point cloud. Specifi-
cally, we evaluate their performance on reconstructing both
closed and open surface with the same setting as that of the
main paper. We show in Figure 2 that in the BR framework,
though both the classification and regression branches can
generate reasonable reconstructions, the final merged re-
sults still exhibit incompleteness. We further demonstrate
the cause of incomplete reconstructions in the overlaid vi-
sualization of the two branches (Figure 3). Since the results

of the two branches are not perfectly aligned due to the dif-
ferent natures of their tasks, the classification branch would
mistakenly remove part of the regressed surfaces generated
by the regression branch. This could render holes and dis-
continuity in the results of the BR method. In comparisons,
the 3C method does not suffer from such a problem as it
only requires a single branch to generate the final recon-
struction. This is also reflected in the quantitative measure-
ments in Table 1.

Discussion. We have evaluated the performance of both
candidate frameworks in two different tasks. In the ap-
plications where the binary classification and regression
branches are well aligned, e.g. the shape reconstruction
task, the BR method can lead to higher-quality results with
smoother surface compared to the 3C approach. However,
for more challenging scenarios, e.g. point cloud comple-
tion, where the two branches of BR framework may pro-
duce slightly deviated reconstructions, the final reconstruc-
tion may be incomplete despite that the two branches have
obtained faithful reconstructions. In contrast, the 3C frame-
work is robust over all kinds of task without the need of
worrying about the misalignment issue. It would be an
interesting future avenue to investigate how to resolve the
misalignment problem of the BR method while enjoying its
smooth nature.

2. Modeling Functions and Manifolds using
3PSDF

Following NDF, we train 3PSDF on 1 million points
sampled from 1000 functions, which are either linear,
parabola or sinusoids. Figure 4 shows the fitting results of
3PSDF to a variety of functions and manifolds. In Figure 4,
red dots are points labeled as “inside” while cyan ones as
“outside”. “Nan” points are omitted for clear demonstra-
tion. As shown in the results, 3PSDF can faithfully model
various functions and manifolds, which further validate that
it is a versatile representation.



Figure 4. Function and manifold fitting using 3PSDF.

3. More Implementation Details
3.1. Reconstruction from Sparse Point Cloud

We use octree-based sampling to generate the ground-
truth data for our approach. The sampling points are the
corner points of the leaf cells generated by octree decom-
position. In particular, we use depth of 6 for generating
training data on pre-processed ShapeNet car category. For
raw, unprocessed ShapeNet car, MGN, and 3D-Front, we
use depth of 8, 7, and 9 respectively for training data gen-
eration. We train separate models for different numbers of
input points. All models are trained using the same set of
hyperparameters. For all experiments, we use the Adam op-
timizer with parameters lr = 1e−4, betas = (0.9, 0.999),
eps = 1e−8, weight decay = 0.

For MGN dataset, we split the data into train and test set
with 9:1 ratio. For 3D-Front dataset, we extract 100 living
rooms, 10 of which is used for testing and the rest is used
for training. For NDF, we generate 1 million points for all
experiments except the scene reconstruction task where we
generate a more dense point containing 3 million points.
The meshing results of NDF are obtained by running the
script (including Ball Pivoting algorithm (BPA) and post-
processing operations) provided by the authors in Mesh-
Lab. All the results are reported using the test data. For
the ShapeNet car dataset, we use the common train and test
split by [10].

3.2. Single-view Reconstruction on MGN

We evaluate and compare the representation capability
of 3PSDF, DISN [10] and OccNet [8] on MGN dataset [3]
for single-view 3D reconstruction. Each garment model in
MGN dataset is rendered into an 256×256 RGB image from
a front-view textured mesh. All the meshes and images are
aligned with the same camera settings and normalized.

For 3PSDF, open surface models in MGN dataset are di-
rectly sampled with Octree-based subdivision at a resolu-
tion of 1283, resulting in a mean sampling points of 300k
across all models. The training batch size is set to 8 and
the number of sampling points is 10k per sample. We use
Adam optimizer with initial learning rate of 3e-4 and ex-
ponentially decayed to 0.99 at every 10k steps. For DISN
and OccNet, models in MGN dataset are first converted to
watertight form and then sampled with the default strategies
used in the original papers. Each watertight model is sam-

pled with 300k points, equivalent to that in 3PSDF. All the
other training hyperparameters are set to default values.

MGN dataset is split into training and testing datasets
with 9:1 ratio, and all 3 networks are evaluated at 20k
epoches.

3.3. Single-view Reconstruction on ShapeNet

We use 17803 shapes from 5 categories of ShapeNet [4]
for evaluation, including Airplane, Car, Lamp, Chair and
Boat. We use the same image renderings (24 views per
shape) and train/test split as Choy et al. [7].

We directly use the raw mesh of ShapeNet to gener-
ate the ground truth to train 3PSDF, while the competitive
methods are trained using pre-processed watertight meshes.
The ground truth 3PSDF values are sampled with resolution
1283 and the results are evaluated using resolution 2563.
The images are all scaled to the resolution of 224× 224. We
first train the network for 30 epochs with learning rate 1e-4,
and then finetune the network for 80 epochs using learn-
ing rate 5e-5. The batch size is set to 8 and the number of
sampled points is 20k for one shape in each iteration during
training. The reconstruction results are post-processed with
simple hole filling and smoothing.

4. Network Structure

4.1. Network Architecture for Shape Reconstruc-
tion

Figure 5 shows the detailed network structure for the ex-
periment of shape reconstruction. In particular, the network
follows the design of the auto-decoder [9] which does not
requires an encoder for learning the shape priors of train-
ing data. The input to the decoder contains: 1) a 512-
dimensional per-object latent code, that is learned during
training, and 2) a point feature obtained after applying point
feature extractor to the 3D coordinate of the query point.
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Figure 5. Network structure for shape reconstruction.

The point feature extractor is implemented using 1D con-
volutional operator. The concatenation of the latent code
and the point feature is then fed into the decoder which con-
sists of multiple fully connected layers. The output layer of
the decoder predicts the per-class probability for the 3 cate-
gories defined by 3PSDF.



4.2. Network Architecture for Reconstruction from
Point Cloud
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Figure 6. Network structure for reconstruction from point cloud.

We show the detailed network structure for reconstruc-
tion from point cloud in Figure 6. To ensure fair compar-
ison, we use the identical network with NDF [6], which is
based on IF-Net [5], for extracting the features from the in-
put point cloud. The extracted multi-scale point features are
then fed into the decoder. The decoder is implemented us-
ing four 1D convolution layers, where the last layer predicts
the per-class probability for 3PSDF.
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Figure 7. Comparison between TSDF and the proposed 3PSDF.
For reconstructing two adjacent single layers of mesh, TSDF
would introduce artifacts (the red layer show on the right of first
row) to the reconstruction result.

4.3. Network Architecture for SVR

Figure 8 shows the detailed network architecture for 3D
reconstruction based on single-view images. The network
takes a set of sampled 3D points and a single view image
as input. We use several 1D convolution layers to obtain
the point features and a VGG-16 (with batch normalization)
architecture to encode the input image. We adopt a two-
stream network architecture, where the point features are
concatenated with global and local image features respec-
tively, and then fed into two branches to predict the 3PSDF.

The global image features are obtained from an average
pooling and a fully connected layer at the end of the image
encoder. For the local features, we project the input 3D
points to the image plane and retrieve the features on each
feature map using the projected coordinates. The retrieved
features on each feature map are concatenated together to
obtain a local image feature vector.

The decoder has two streams with the same structure,
each of which consists of a set of fully connected layers to
predict the 3PSDF separately. The outputs from the two
branches are summed up and passed through a Softmax
layer to obtain the final prediction.

5. Comparison with TSDF
Truncated Signed Distance Field (TSDF) is widely used

in obtaining reconstruction results from the volumetric
range data, e.g. the RGBD stream from depth sensors. One
mainstream application of TSDF is large-scale tracking and
mapping in reconstructing 3D scenes. As one may have
seen open surfaces, e.g. the walls in the reconstructed 3D
environment, can be reconstructed using TSDF, we provide
detailed comparisons here stating the difference between
TSDF and 3PSDF regarding the ability of modeling sur-
faces with arbitrary topologies.

The motivation of introducing TSDF is to set a lower
bound of reconstruction error during the fusion of differ-
ent SDFs converted from the depth maps. In particular, in
real-world scanning, the raw data obtained from the depth
sensor is highly likely to be contaminated by the noises. In
practice, the depth maps are converted into SDFs in order to
fuse the per-frame observation into a more complete recon-
struction in the canonical space. However, the most widely
adopted way of fusing the SDFs is based on weighted sum-
mation, where the errors brought by each SDF would be ac-
cumulated and affecting the previously fused results. TSDF
alleviates this issue by clipping the minimum and maximum
signed distance value and hence prevents the summed TS-
DFs from deviating too much from the ground-truth value.

After analyzing the motivation of TSDF, we can better
understand the difference between TSDF and our proposed
3PSDF. (1) Unlike 3PSDF, TSDF remains a binary-sided
signed distance function which only has positive and nega-
tive signs. This could render TSDF failed to represent open
surfaces without introducing artifacts in many cases. As
shown in Figure 7 upper row, for two adjacent surfaces with
consistent normals, the positive and negative signs would
intersect with each other in the middle region where the
SDFs are truncated to maximum and minimum respectively.
This leads to an additional surface/artifact (the red bound-
ary on the right) if meshing such a field using the Marching
Cubes algorithm. In contrast, 3PSDF can achieve artifact-
free reconstruction by inserting a NULL layer in between to
prevent the formation of the additional decision boundary.
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Figure 8. Detailed network architecture for single view reconstruction.

(2) The way that TSDF models open surfaces is completely
different from that of 3PSDF. In particular, TSDF generates
open surfaces by space clipping, where only the field within
a bounded volume is converted into mesh. In comparison,
3PSDF is able to model open surfaces by directly meshing
the entire 3D space without requiring a clipping bounding
volume.

6. More Results
Reconstruction of closed surfaces from sparse point
cloud. We provide more qualitative comparison results
with the state-of-the-art approaches on the task of shape re-
construction from sparse point cloud. In Figure 9, we show
the reconstruction result using the models trained on pre-
processed ShapeNet car data (watertight mesh with inner
structure removed) provided by [10].

Reconstruction of complex surfaces from sparse point
cloud. In Figure 10 we provide more qualitative compar-
isons of shape reconstruction results of complex surfaces
that contain both closed and open surfaces. All the can-
didate approaches, including ours, are trained on on raw,
unprocessed ShapeNet car data, which contain inner struc-
tures and open surfaces. As seen in the highlighted regions
within the red rectangles, our approach is able to generate
shapes with consistent normals even when the ground truth
data may contain flipped face patches.

Reconstruction of 3D scenes from sparse point cloud.
In Figure 11, we show more visual comparisons of scene
reconstruction results. The input point cloud (for both main
paper and supplementary material) contains 50K points.
Note that we are not able to generate plausible meshing re-

sult for NDF even after experimenting with various parame-
ters of BPA algorithm. Hence we show the raw output point
cloud of NDF in the closeup figure.

Single-view reconstruction. We include more qualitative
comparison results on the test set of ShapeNet in Figure 12.
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Figure 9. More shape reconstruction results trained on watertight data. We show four groups of results: the first two rows are reconstructed
from 3000 points while the last two rows are generated given 300 points.
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Figure 10. More shape reconstruction results trained on unprocessed, raw data. For each group of results, we show the input (10K points)
on the left and two rows of corresponding results on the right. For the second group of result, we show the inner structure of reconstruction
on top of an external view. The highlighted regions within the red rectangles show that our method can generat reconstruction results with
consistent normals even when the ground-truth data contain flipped triangles.
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Figure 11. Scene reconstruction results from sparse point cloud. For each method, we show both the closeups (first row) and the global
view (second row). NDF results contain 3 million points. Note that since we are not able to generate plausible meshing results for NDF
even after experimenting with various BPA parameters, we show the output raw point cloud in the closeup of NDF. The other results are
displayed in mesh form.
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Figure 12. More qualitative comparison results with SOTA single-view reconstruction methods based on implicit functions.
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