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A. Proof and theoretical analysis
A.1 CDF of an arbitrary continuous distribution is
uniformly distributed

To address the issue that non-i.i.d. training and testing
data induce a large quantization error (discussed in subsec-
tion 3.1.1 of the main paper), we propose a CDF alignment
process to transform data in different distributions into the
same space for quantization error minimization (introduced
in subsection 3.1.2 of the main paper). In the following
theorem, we demonstrate that the CDF of any continuous
distributions follows uniform distribution.
Theorem 3.1 Let X have the cumulative distribution func-
tion (cdf) of the continuous type that is strictly increasing
on the support a ≤ x ≤ b. Then the function Y = F (X)
has a distribution Uniform(0, 1).

Proof. Since F(a) = 0 and F(b) = 1, the cdf of Y is

P (Y ≤ y) = P [F (X) ≤ y] = P [X ≤ F−1(y)]

= F [F−1(y)] = y, 0 ≤ y ≤ 1,

which is the cdf of a Uniform(0, 1) random variable.

Theorem 3.1 proves that CDF of an arbitrary continuous
distribution follows uniform distribution in the range (0, 1).
Accordingly, we can ensure the training and testing data are
in the same space (i.i.d.) by the alignment with their indi-
vidual CDFs.

A.2 Theoretical analysis on the relation between
data correlations and quantization error

In addition to the quantization error derived from non
i.i.d. training and testing data, we further analyze the error
induced by the changes of data after quantization. Existing
research mainly focused on designing a quantization
approach that reduced the discrepancy of individual data
before and after quantization. However, they ignored

the changes in data correlations after quantization. The
following proposition and theorem demonstrate that not
only the differences of individual values but also the
significant changes in data correlations after quantization
induce a large quantization error.

Proposition 1. The significant changes in the data correla-
tions after quantization induces a larger quantization error
(proved in Theorem 3.2).

In contrast to the quantization errors derived from the
changes of the individual data ||Xi −Q(Xi)||1,∀i, we con-
sider the total quantization error

∑
i ||Xi−Q(Xi)||1, where

Xi represents the i-th data, Q denotes the quantization
function, and || · ||1 is the l1-norm. To quantify the induced
quantization error from our quantized model, we define a
tolerated quantization error ϵ in the proof of Proposition 1.
If the quantization error exceeds the tolerated error ϵ, then
we regard the error is large, and vice and versa. Thereby,
as the following theorem, we focus on analyzing the prob-
ability that the total quantization error is smaller than the
tolerated error, denoted as P (

∑n
i=1 ||Xi −Q(Xi)||1 < ϵ).

Theorem 3.2 Let Xi ∈ Rd be the CNN representation of the
i-th of n input image data. The function Q quantizes the val-
ues to the discete Uniform(−α, α), α ≥ 0. The quantized
representation is denoted as Q(Xi), and the total quantiza-
tion error of n data is

∑n
i=1 ||Xi − Q(Xi)||1, where || · ||1

represents the l1-norm. Now let the individual quantization
error δi = Xi − Q(Xi), ∀i = 1, 2, ..., n, and the tolerated
quantization error as ϵ. Then P (

∑n
i=1 ||Xi − Q(Xi)||1 <

ϵ) ≥ 1− n
ϵ2E[||δi||

2
1]− 4α

ϵ2

∑n
i,j=1; i<j E(||δi||1+ ||δj ||1)−

2
ϵ2

∑n
i,j=1; i<j E(|X

T
i Xj −Q(Xi)

TQ(Xj)|).



Proof.

P (

n∑
i=1

||Xi −Q(Xi)||1 ≥ ϵ)

≤
E[(

∑n
i=1 ||Xi −Q(Xi)||1)2]

ϵ2
, by Markov’s Inequality.

Note that

Since we let δi = Xi − Q(Xi), i.e., Xi = Q(Xi) +
δi, the term (Xi)

TQ(Xj) can be written as (Q(Xi) +
δi)

TQ(Xj), and the term Q(Xi)
T Xj can be reformulated

as Q(Xi)
T (Q(Xj) + δj), which implies

E[(
n∑

i=1

||Xi −Q(Xi)||1)2]

=

n∑
i=1

E(||δi||1)2

+ 2

n∑
i,j=1; i<j

E(|XT
i Xj +Q(Xi)

TQ(Xj)

− (Q(Xi) + δi)
TQ(Xj)

−Q(Xi)
T (Q(Xj) + δj)|)

≤ nE[||δ||21]

+2

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)

− δTi Q(Xj)−Q(Xi)
T δj)|,

where ||δ||1 = maxi ||δi||1. Since

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)

− δTi Q(Xj)−Q(Xi)
T δj)|

≤
n∑

i,j=1; i<j

E(|δTi Q(Xj)|+ |Q(Xi)
T δj)|)

+

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)|),

and

n∑
i,j=1; i<j

E(|δTi Q(Xj)|+ |Q(Xi)
T δj)|)

≤
n∑

i,j=1; i<j

2α · E(||δi||1 + ||δj ||1),

by Q(Xi) follows Uniform(−α, α),∀i,
n∑

i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)

− δTi Q(Xj)−Q(Xi)
T δj)|

≤
n∑

i,j=1; i<j

2α · E(||δi||1 + ||δj ||1)

+

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)|).

Thus,

E[(
n∑

i=1

||Xi −Q(Xi)||1)2]

≤ nE[||δ||21]

+2

n∑
i,j=1; i<j

2α · E(||δi||1 + ||δj ||1)

+2

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)|),

Hence,

P (

n∑
i=1

||Xi −Q(Xi)||1 ≥ ϵ)

≤ n

ϵ2
E[||δ||21] +

4α

ϵ2

n∑
i,j=1; i<j

E(||δi||1 + ||δj ||1)

+
2

ϵ2

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)|).

As a result, it is proved that

P (

n∑
i=1

||Xi −Q(Xi)||1 < ϵ)

≥ 1− n

ϵ2
E[||δ||21]−

4α

ϵ2

n∑
i,j=1; i<j

E(||δi||1 + ||δj ||1)

− 2

ϵ2

n∑
i,j=1; i<j

E(|XT
i Xj −Q(Xi)

TQ(Xj)|).

The last inequality of Theorem 3.2 derives a lower bound
on the probability P (

∑n
i=1 ||Xi − Q(Xi)||1 < ϵ). Ac-

cordingly, the probability increases, i.e., the total quanti-
zation error is relatively small in a high probability, when
the lower bound becomes larger. Thereby, it indicates that a
small quantization error can be acquired in a high probabil-
ity when 1) the individual quantization errors ||δi||1,∀i are



small, and 2) the total discrepancy of the data correlations
before and after the quantization

∑n
i,j=1; i<j E(|X

T
i Xj −

Q(Xi)
TQ(Xj)|) is also small. To minimize the total quan-

tization error, both the individual quantization errors and
the changes in the data correlations need to be effectively
reduced.

Existing research only focuses on the design of a quanti-
zation function correlated to the data distributions, for min-
imizing the individual quantization error. However, Theo-
rem 3.2 proves that the significant changes in data correla-
tions after quantization can induce a large quantization er-
ror. Therefore, in Sec. 3.2, we propose to minimize the
discrepancy of the data correlations before and after the
alignment-quantization process (detailed in Sec. 3.1).

B. Performance of quantized DSAN on Office-
31 dataset

To validate AlignQ that can effectively minimize the
quantization error derived from non-i.i.d. in training and
testing data, we evaluate AlignQ and the state-of-the-art
on the domain shift benchmark dataset, Office-31. In Sec.
4.3.2 in the main paper, we have employed a baseline trans-
fer learning model DANN. Here we adopt a state-of-the-
art model DSAN to verify the effectiveness of AlignQ. Ta-
ble 1 presents the performances of the quantized DSAN on
Office-31 dataset at different bitwidths. It manifests that
AlignQ achieves outstanding performances compared with
the rencent works, especially for the low bitwidths (4 bits).
AlignQ applied on the 4-bit DSAN achieves more than 20%
accuracy improvements compared with zero-shot quantiza-
tion (ZSQ) [5, 9, 32], since ZSQ relies on the pretrained
full-precision model on the training data, but the target test-
ing data is in a different domain with a different distribu-
tion. In addition, compared with quantization-aware train-
ing (QAT) [29, 49], AlignQ obtains 1% to 6% accuracy in-
crements. The result indicates that the learned quantization
ranges and the gradient estimation according to the training
data cannot be applied on the testing data with a minimal
quantization error due to non-i.i.d. in training and testing
data. In contrast, AlignQ addressing the issue of non i.i.d.
data can further minimize the quantization error by aligning
the distributions to the same domain (see Sec. 3.1 in the
main paper) and preserving the data correlations during the
alignment-quantization process (detailed in Sec. 3.2 in the
main paper).

C. Effectiveness of CDF alignment and
ADMM-based data correlation preservation in
AlignQ

In Sec. 5 in the main paper, we have validated the indi-
vidual effectiveness of the AlignQ components on CIFAR-
10 and DANN on Office-31. Here we examine the quanti-

Table 1. Accuracy (%) of quantized DSAN (ResNet-50) [50] on
Office-31. Three data domains in Office-31 include Amazon (A),
Webcam (W), and DSLR (D), thereby indicating six combinations
of domain shift classification tasks. The average performance is
denoted as “Avg.”.

W/A bit Method A → W D → W W → D A → D D → A W → A Avg.

32/32
Source only 81.3 98.0 100.0 86.6 62.9 62.2 81.8
DSAN [49] 91.2 97.7 100.0 91.2 72.3 66.4 86.5

AlignQ (Ours) 93.0 98.2 100.0 92.9 73.5 67.6 87.5

4/4

DoReFa [48] 90.1 97.7 100.0 89.3 65.8 62.0 84.2
APoT [28] 86.0 97.1 97.1 76.8 61.7 57.0 79.3

Choi et al. [9] 70.8 86.0 90.2 69.6 29.3 32.6 63.1
ZeroQ [5] 70.8 86.0 89.3 67.9 25.6 34.8 62.4
ZAQ [31] 71.2 87.1 90.3 68.2 28.5 35.9 63.5

AlignQ (Ours) 91.2 97.7 100.0 92.0 68.8 62.7 85.4

5/5

DoReFa [48] 90.6 97.7 100.0 92.0 67.4 61.2 84.8
APoT [28] 83.0 97.7 97.6 83.0 64.1 59.8 80.9

Choi et al. [9] 90.6 98.2 100.0 89.3 66.6 63.2 84.7
ZeroQ [5] 90.6 97.7 100.0 90.2 69.0 63.2 85.1
ZAQ [31] 91.2 97.7 100.0 91.1 66.7 63.1 85.0

AlignQ (Ours) 91.1 98.2 100.0 92.0 69.2 63.2 85.6

8/8

DoReFa [48] 90.6 97.7 100.0 91.0 67.9 62.6 85.0
Choi et al. [9] 91.1 97.7 100.0 91.1 68.6 62.9 85.2

ZeroQ [5] 91.0 97.7 100.0 91.1 68.4 62.9 85.2
ZAQ [31] 91.2 97.7 100.0 91.1 68.2 62.8 85.2

AlignQ (Ours) 92.0 98.8 100.0 91.0 68.8 62.8 85.6

Table 2. Effectiveness of AlignQ components. Accuracy (%) of
quantized DSAN (ResNet-50) [50] on Office-31.

W/A bit Method A → W D → W W → D A → D D → A W → A Avg.

4/4

Uniform 74.9 86.3 92.2 68.1 25.4 .43.0 63.3
Ours (ADMM only) 76.0 87.1 92.9 68.8 26.3 .43.3 64.1

Ours (CDF only) 91.1 97.7 100.0 90.1 67.2 62.4 85.1
Ours (CDF+ADMM) 91.2 97.7 100.0 92.0 68.8 62.4 85.4

Ours (Best of all) 91.2 97.7 100.0 92.0 68.8 62.7 85.4

5/5

Uniform 87.9 97.5 100.0 91.5 64.2 61.6 83.8
Ours (ADMM only) 88.4 98.2 100.0 92.0 65.7 61.9 84.4

Ours (CDF only) 91.1 97.7 100.0 92.0 67.6 61.9 85.2
Ours (CDF+ADMM) 89.5 98.2 100.0 92.0 69.2 63.2 85.4

Ours (Best of all) 91.1 98.2 100.0 92.0 69.2 63.2 85.6

8/8

Uniform 91.1 97.7 100.0 88.2 65.4 61.7 84.0
Ours (ADMM only) 91.1 97.7 100.0 90.2 66.9 62.0 84.7

Ours (CDF only) 91.1 97.7 100.0 91.0 68.8 62.0 85.1
Ours (CDF+ADMM) 92.0 98.8 100.0 91.0 68.8 62.7 85.6

Ours (Best of all) 92.0 98.8 100.0 91.0 68.8 62.7 85.6

zation results of each component in AlignQ and the base-
line uniform quantization in Table 2. Table 2 compares
the quantization results of 1) ”Uniform”: the baseline uni-
form quantization (see Eq. (2) in the main paper), 2) Ours
(ADMM only): the ADMM-based data correlation preser-
vation in AlignQ (illustrated in Sec. 3.1 in the main pa-
per), 3) Ours (CDF only): the CDF alignment quanti-
zation in AlignQ (detailed in Sec. 3.2 in the main pa-
per), 4) Ours (CDF+ADMM): considered with both CDF
alignment quantization and ADMM-based data correlation
preservation components in AlignQ, and 5) Ours (Best of
all): summarized with the best result from the above cases.

The results manifest that when we adopt the CDF align-
ment with quantization to transform the training and testing
data in different domains to the same uniform space (case
CDF only), we can achieve outstanding performances, es-
pecially for the low bitwidths. For the 4-bit quantization,
case CDF only has an 85.1% accuracy over all domain
shift tasks, significantly outperforms the uniform quanti-



(a) ResNet-20 on CIFAR-10 (b) ResNet-20 on CIFAR-10

(c) MobileNet-v2 on SVHN (d) MobileNet-v2 on SVHN

(e) ResNet-50 on ImageNet (f) ResNet-50 on ImageNet

Figure 1. Distributions of CNN weights and activations on
the benchmark datasets, including ResNet-20 on CIFAR-10,
MobileNet-v2 on SVHN, and ResNet-50 on ImageNet.

zation with only 63.3% (more than 20% accuracy incre-
ment). Furthermore, when we leverage ADMM optimiza-
tion to minimize the changes in data correlations during the
quantization, we can further obtain accuracy improvements
in most of the tasks. For example, the 4-bit DSAN quan-
tized by ADMM only compared with ”Uniform” can ob-
tain approximately 1% accuracy improvements in all tasks.
In addition, The 5-bit DSAN quantized by AlignQ outper-
forms ADMM only in 1.5% to 2% accuracy improvements
on the tasks such as D → A and W → A. Accordingly, the
results manifest that the proposed CDF alignment quantiza-
tion can effectively address the issue of a large quantization
error derived from non-i.i.d. in training and testing data.
Furthermore, the ADMM optimization is also effective on
minimizing the quantization error from the changes in data
correlations during the quantization process.

D. Normality in CNN weights and activations

In Sec. 3.1.1 of the main paper, we consider using CDF
of normal distributions as the data alignment function since
the previous research has studied that the CNN weights
and activations converge in normal by and large. Here, we
conduct experiments on the benchmark image datasets and
CNN architectures to examine the prior research studies.
Fig. 1 visualizes the distributions of CNN weights and ac-
tivations on the benchmark architectures and datasets. The
results show the normality of the weights and activations

Figure 2. Training loss of quantized ResNet-20 on CIFAR-10 by
AlignQ on minimizing the discrepancy of data correlations.

when CNN models converge, which is consistent with the
previous studies [17, 29, 33, 49] and thereby appropriate for
the CDF of normal distribution as a data alignment function.

E. Convergence analysis on ADMM optimiza-
tion

Algorithm 1 in the main paper presents the training pro-
cess of AlignQ. Sec. 3.2.3 illustrates that we update the
ADMM parameters with the model weights in each training
iteration for an efficient quantization process. To ensure the
convergence, we examine the training loss on minimizing
the discrepancy of data correlations during quantization as
shown in Fig. 2. The decreasing loss with the training pro-
cess manifests the convergence of the ADMM optimization
process. Moreover, it also verifies that the discrepancy of
data correlations is diminished.


