
A1. More Technical Details

We summarize the detailed procedures of Aug-NeRF in
the Algorithm 1.

Algorithm 1 The training pipeline of Aug-NeRF. For sim-
plicity, we assume batch size is 1.

Initialize: Training view images I = {Ii ∈ RM}Ni=1 and
their associated camera poses P = {ϕi ∈ R3×4}Ni=1.
Define neural radiance field FΘ(p,θ) = (g◦f(p,θ), h◦
f(p)) : (p,θ) 7→ (c, σ) as in Sec. 4.2.

1: Cast rays for each pixel in each Ii via inverse pro-
jection with respect to ϕi, and obtain a set of rays
R = {(oi,di,θi, Ĉi)}NM

i=1 .
2: while until convergence do
3: Randomly pick a ray (oi,di,θi, Ĉi) ∈ R
4: Generate adversarial perturbations δt, δxyz , δθ, δf ,

δc, δσ by solving Eqn. 4 using PGD (Eqn. 5) within the
corresponding search space in Sec. 4.2.

5: # Sample points along rays.
6: (Coarse) Sample K/2 depth intervals tk along the

rays uniformly
7: (Fine) Sample K/2 depth intervals tk via propor-

tional to coarse sampled densities [29].
8: for k ∈ {1, · · · ,K} do
9: t†k = tk + δt,k,θ

†
i = θi + δθ.

10: pk = oi + tkdi,p
†
k = oi + t†kdi + δxyz

11: (ck, σk) = g ◦ f(pk,θi), h ◦ f(pk)

12: c†k = g(f(p†
k) + δf ,θ

†
i) + δc

13: σ†
k = h(f(p†

k + δf)) + δσ
14: end for
15: # Volumetric rendering.
16: (∆tk,∆t†k) = tk − tk−1, t

†
k − t†k−1

17: T (k) = exp
(
−
∑k−1

l=1 σl∆tl

)
18: T †(k) = exp

(
−
∑k−1

l=1 σ†
l∆t†l

)
19: Ci =

∑K
k=1 T (k)(1− exp(−σk∆tk))ck

20: C†
i =

∑K
k=1 T

†(k)(1− exp(−σ†
k∆t†k))c

†
k

21: # Train network.
22: L = ∥Ci − Ĉi∥22 + λ∥C†

i − Ĉi∥22
23: Update network parameter Θ via ∇ΘL.
24: end while

A2. More Experiment Results

Qualitative results on NeRF-Synthetic 360° dataset. We
present the constructed test views in Fig. A8 and the learned
depth maps in Fig. A9. As shown in Fig. A8, we find that the
vanilla NeRF fails to capture the fine-grained details of ob-
jects, such as the “ship net”, while Aug-NeRF demonstrates
substantially improved visual qualities.

In the meantime, from the depth maps in Fig. A9, NeRF

Ground Truth
 NeRF
 Aug-NeRF

D
ru

m
s

C
ha

ir

Sh

ip

Figure A8. Comparisons on test-set views for scenes from the
NeRF-Synthetic 360° dataset generated with a physics-based ren-
derer [29].

baseline suffers from severe noises. On the contrary, Aug-
NeRF enjoys much more smooth depth maps, which sug-
gests that our proposed triple-level robust augmentations
indeed enhance the NeRF’s continuity and generate smooth
geometry representations.

N
eR

F
A
ug
-N
eR

F

Drums Ship Chair

Figure A9. Comparisons of learned depth maps from NeRF and
our Aug-NeRF on scenes from NeRF-Synthetic 360° dataset.

Benefits in overfitting vs underfitting cases. We take the
scene “chair” as an example, and investigate three combi-
nations of different model sizes and data scales as below
Tab. A5: (i) big NeRF (512) on small images (12 Res.); (ii)
normal NeRF (256) on small images (12 Res.); (iii) small
NeRF (128) on large images (Full Res.). We show that in
all settings of overfitting / normal case / underfitting, our

proposed augmentations are consistently beneficial.

Table A5. Performance of Aug-NeRF on different backbone and
data size combinations.
Setting Model PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Big NeRF (512)
+ 1

2 Res.
NeRF 33.56 0.968 0.043 0.015
Aug-NeRF (Ours) 34.26 0.973 0.038 0.013

Big NeRF (256)
+ 1

2 Res.
NeRF 33.27 0.968 0.045 0.016
Aug-NeRF (Ours) 33.92 0.971 0.038 0.013

Small NeRF (128)
+ Full Res.

NeRF 33.00 0.967 0.046 0.016
Aug-NeRF (Ours) 33.86 0.970 0.041 0.014

Geometry extraction. To obtain geometric visualization
in Fig. 5, we first query the network FΘ with a regular lattice
defined over [−1, 1]3, and export a discretized density field
volume. The absolute voxel size is 2/512. Then we employ
marching cube algorithm [22] provided in UCSF Chimera2

to extract the surface. We set the threshold to 25 and 1 for
chairs and drums, respectively. The step size is chosen as 1.
In order to numerically assess the quality of reconstructed
geometries, we introduce Chamfer Distance (CD) to measure
the difference between reconstructed geometries and ground-
truth models:

dCD =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2 +
1

|S2|
∑
x∈S2

min
y∈S1

∥x− y∥2,

where S1 and S2 are point sets sampled from the extracted
surfaces and ground-truth models, respectively. On scene
chair, our AugNeRF achieves 1.04 × 10−2 CD which is
29.25% lower than vanilla NeRF (1.47× 10−2).

Different types of noise and inaccurate camera poses.
As shown in Tab. 3 and Fig. 6, we experiment on two kinds
of corruptions, i.e., Gaussian and Shot noises. In this para-
graph, we add extra results of training with Pepper noise
and inaccurate camera poses are collected in below Tab. A6.
The results consistently demonstrate the superiority of Aug-
NeRF. We note that our main goal is to endow NeRF with
smoothness-aware geometry reconstruction, enhanced gener-
alization to synthesizing unseen views, while the improved
tolerance of noisy supervisions is a by-product bonus.

Table A6. Additional results of Aug-NeRF trained on images
corrupted by pepper noise and inaccurate camera poses.
Noise Type “fern” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓

Pepper Noise NeRF 19.01 0.401 0.546 0.174
Aug-NeRF (Ours) 19.96 0.568 0.403 0.138

Inaccurate Pose NeRF 12.31 0.253 0.725 0.333
Aug-NeRF (Ours) 13.54 0.365 0.811 0.306

Implementation of explicit regularization. We investi-
gate three types of explicit regularizations: ℓ1 sparsity, total

2https://www.cgl.ucsf.edu/chimera/

variation (TV), and Laplacian. The TV regularization is
defined as:

RTV(Θ) =

∫
[−1,1]3

|∇xσΘ(x)|dx,

where σΘ denotes the density branch of the function FΘ.
However, evaluating this integral is implausible. Instead,
we discretize the integral interval into regular grids and con-
ducting quadrature rule for estimating TV regularization:

RTV(Θ) =

N∑
i=1

N∑
j=1

N∑
k=1

|∇xσΘ(δi, δj, δk)|δ3,

where we utilize auto-differentiation provided in PyTorch
Library to calculate ∇xσΘ. Similarly, we can approximate
ℓ1 sparsity and Laplacian regularization by:

Rℓ1(Θ) =

∫
[−1,1]3

|σΘ(x)|dx

≈
N∑
i=1

N∑
j=1

N∑
k=1

|σΘ(δi, δj, δk)|δ3

RLap(Θ) =

∫
[−1,1]3

|∆xσΘ(x)|dx

≈
N∑
i=1

N∑
j=1

N∑
k=1

|∆xσΘ(δi, δj, δk)|δ3

where ∆ = div ·∇ denotes the Laplacian operator.

