A. Proof of Theorem 1

Proof. since sptr* C N, its easy to verify that 7* €
IV (1, v), so that TIY (11, v) is nonempty. and the problem
Min e () Ex(7) is feasible.

Now let 77*(g;) be the solution of (7) for ¢ = ¢;. Since
IV (1, v) is bounded, we can extract a sequence (that we
do not relabel for the sake of simplicity) such that 7*(¢;) —
7* (1 — 400). Since IV (1, v) is closed, 7* € TV (u, v).
Since 7* is an optimal solution of unregularized problem,
one has
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Since 7*(g;) is the solution of (7),one has
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By combining (17) and (18) together we have
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Since the H is continues, taking the limit [ — o0 in (19)

shows that (¢, 7*) = (¢, 7*), so that 7* is a feasible candi-
date of the following optimization problem
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s.t. (¢, m) = Le(p,v).
Dividing by ¢; in (19) we have
0< H(7*(e)) — H(x*) @1)
Taking the limits [ — o0 shows that H(7n*) < H(7*),

which shows that 7* is a solution of (20). Since the solution
to the problem (20) is unique by strict convexity of —H, we
have 7* = 7* and the whole sequence is converging. Since

xlog % is a continuous and bounded for x € [0, 1], we have
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which finishes the proof.
A.1. Proof of Theorem 2
We extend the restricted kernel K to the whole space Nj.
Define
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Since spt7* C A and f(ij is strictly positive for all (4, j) €
N, it is easy to check that 7;(K) > 0 for all i € [n] and
¢;(K) > 0forall j € [m], so that the iteration in Algorithm
1 can be extended to the whole space N with

WY (Ko ™), for all i € [n],
v(k“) +— v®) ks even,
1;](.k+1) — yj/cj(IN(Tu(k“)), forall j € [m],

™Y 4 ®) ks odd. (24)
According to the theorem of the RAS algorithm (see [23]
Theorem 4.1), the iteration (24) is convergent and outputs a
coupling  satisfying ||r(7) — |2 + ||c(7) — v||2 < 6% It
is easy to check that m;; = 0 for all (¢, j) € Ny \ NV, which
shows that 7(7) = V' (x) and ¢(r) = ¢V (r). The number
of iterations K5 needed to scale K to accuracy ¢ satisfies
K5 = O(ph(5) 2 log (h/s)), where h = 3=, oo ij =
Z(z en Mg, S = MiNg(; jyeNy|mi; >0} T =
ming jjex ™ and p = max{||r(7)|[so, ||c(7)||o }
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A.2. Proof of Theorem 3

Let NN C My be a subspace such that sptm* C
N. Algorithm 1 with stopping criterion ||V (7)) —
plli + ||V (x®)) — v|l; < § outputs a matrix 7 sat-
istying [|rN(m) — plly + ||V(m) — v]li < & after
O((6)2log (h/s)) iterations.

Proof. (Pinskers Inequality). For any probability mea-
sures p and ¢, |[p — q||1 < /2KL(p|q).

Let k* be the first iteration such that ||V (7)) — ||, +
||V (7*")) — v||; < §. Pinskers inequality implies that for




any k < k*, we have So that
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Assume without loss of generality that &k is even, so that i=1 j=1
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z:: HiT08 T By (k) ; 3708 U(.k) So that the inequality (32) implies that we terminate in
k* < 26~ 2log(h/s) steps, which finishes the proof.
So that To prove Theorem (4), we state the following lemmas.
(k+1) m (k+1)
2 - ZM’ log (k) +3 log (k) (26) Lemma 1 Forw € II(u, v), we have 0 < H(w) < nlogn.
j=1
. ) ’ ) Lemma 2 If my, w3 € R}*™ are nonnegative matrices and
Equation (26) holds for k is odd. By takingk =1, ..., k+1 A € [0, 1], we have
and adding all the equality together we have ’
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Sk8” <D milogu™ vy log o - max { [ |1, 2} - ()
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n m where h(X\) = Alog + + (1 — A)log = VA, € [0,1].
Zui logugl) — Zl/ 1ogv( ). 27
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Define the Lyapunov functiion R” x R™ — R

flzy) = Z K;je®ityi —Zum Zujy] (28)

Lemma 4 Let 7 be the optimal solution of the unregular-
ized problem, 7*(€) be the optimal solution of the restricted
optimal transport (7). The gap between the n* and 7* ()
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Let f(z*,y*) the global minimum of f, we have
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can be bounded by
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Proof. Let V be the vertices of II(u,v) and O : {r €
V|{m,c) = (7*,c)} be the set of optimal vertex solution
of (3). Let the suboptimal set be defined as O, := {7 €



Vi{m,e) > (m,c)}. Since 7*(¢) € I(u,v), there exist
A€ (0,1),7* € V and 7 € span(Os) such that
(&) = (1 =y)r" + 7.

We define the gap between 7*(£) and 7* by
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The upper bound of g(g) could be estimated by

* (é) C> - <7T*7C> (32)

g(e) =
<eH(7*(€)) —eH ().

According to Lemma?2, we have

H(7*(€)) = H((1—)7" +7)
< (I =y)H(") +~H(7)

+ max{[|7 1, [7[1 }h(A).
One can check that ||7*||; = 1, so that we have
H(#(E) <1 —=7)H(@") +yH(T) +h(A).  (33)

Combining (32) and (33), the upper bound of g(&) /e could
be estimated by
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According to lemmal and v < %, we have
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)+ h(Z).

According to lemma 1 and lemma 3, we have

gf) < %nlogn + g(e) log -2 so T %7
which shows that A exp(—A/e + nlogn) > g(e) > Ay
and
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A.3. Proof of Theorem 4

Proof. First, we prove that A > 0, that is, we show

inf (e,m) — {c,m*) > 0. Since the set V is
{reV:i(c,m)>(c,m*)}

the vertices of the set IT(1, V), so that the set V' contains

finite elements, which shows that the set {m € V' : (¢, 7) >
(e, 7*)} has finite elements and we have A > 0.

Second, let s = min{(i’j)GNmPO} m;;, we show that
forany e < g9 < m, the following inequality
holds:

7€) — 7]y < 5+, (34

where 7(g)"*+1) is the coupling generated by the Restrict-
edSinkhorn (Algorithm 2, step 5). If the claim (34) does not
hold, then there exits some & < m such that
7@ — 7] = 5+, (39)

Let 7*(£) be the optimal solution of the restricted optimal
transport (7), we have
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< &EUD = 7@y
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According to Lemma 4, we have
|7*(€) — 7|1 < 2exp(—A/E+nlogn)
So that we have
[7%(&) = 7*|li < exp(—% +nlogn)
< exp(———4—— 4 nlogn)
nlog n—log(s/2)
— exp(log(s/2))
=s/2
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By combing (36) and (37), we have
7@ -7y < 6+3, (38)

which contradicts the result of (35). So the claim (35) is
incorrect and claim (34) holds.
So that for any (3, j) € sptm, we have
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Finally, let § < (5 — &)(1+9), we have

K{}m) (eHD) oD gl+D)y = exp(log(frxﬁ))(l +e)
> exp(log(5 — 6)(1+¢))

= (% - 5)(1+C) > 67

which shows that K{\j[(l) (WD oD gU41)Y > g for any
(,7) € sptr.



