A. Proof of Theorem 1

Proof. since $\operatorname{spt}\pi^*\subset\mathcal{N}$, its easy to verify that $\pi^*\in\Pi^{\mathcal{N}}(\mu,\nu)$, so that $\Pi^{\mathcal{N}}(\mu,\nu)$ is nonempty. and the problem $\min_{\pi\in\Pi^{\mathcal{N}}(\mu,\nu)}\hat{E}_{\varepsilon}(\pi)$ is feasible.

Now let $\hat{\pi}^*(\varepsilon_l)$ be the solution of (7) for $\varepsilon = \varepsilon_l$. Since $\Pi^{\mathcal{N}}(\mu,\nu)$ is bounded, we can extract a sequence (that we do not relabel for the sake of simplicity) such that $\hat{\pi}^*(\varepsilon_l) \to \hat{\pi}^*(l \to +\infty)$. Since $\Pi^{\mathcal{N}}(\mu,\nu)$ is closed, $\hat{\pi}^* \in \Pi^{\mathcal{N}}(\mu,\nu)$. Since π^* is an optimal solution of unregularized problem, one has

$$0 \leq \langle c, \hat{\pi}^*(\varepsilon_l) \rangle - \langle c, \pi^* \rangle$$

$$= \sum_{(i,j) \in \mathcal{N}_0} c_{ij} \hat{\pi}_{ij}^*(\varepsilon_l) - \sum_{(i,j) \in \mathcal{N}_0} c_{ij} \pi_{ij}^*$$

$$= \sum_{(i,j) \in \mathcal{N}} c_{ij} \hat{\pi}_{ij}^*(\varepsilon_l) - \sum_{(i,j) \in \mathcal{N}} c_{ij} \pi_{ij}^*$$

$$(17)$$

Since $\hat{\pi}^*(\varepsilon_l)$ is the solution of (7), one has

$$\sum_{(i,j)\in\mathcal{N}} c_{ij}\hat{\pi}_{ij}^*(\varepsilon_l) - \varepsilon_l \sum_{(i,j)\in\mathcal{N}} \hat{\pi}_{ij}^*(\varepsilon_l) \log \frac{1}{\hat{\pi}_{ij}^*(\varepsilon_l)} \le \sum_{(i,j)\in\mathcal{N}} c_{ij}\pi_{ij}^* - \varepsilon_l \sum_{(i,j)\in\mathcal{N}} \pi_{ij}^* \log \frac{1}{\pi_{ij}^*}$$
(18)

By combining (17) and (18) together we have

$$0 \leq \langle c, \hat{\pi}^*(\varepsilon_l) \rangle - \langle c, \pi^* \rangle$$

$$\leq \varepsilon_l \left(\sum_{(i,j) \in \mathcal{N}} \hat{\pi}_{ij}^*(\varepsilon_l) \log \frac{1}{\hat{\pi}_{ij}^*(\varepsilon_l)} - \sum_{(i,j) \in \mathcal{N}} \pi_{ij}^* \log \frac{1}{\pi_{ij}^*} \right)$$

$$= \varepsilon_l \left(\sum_{(i,j) \in \mathcal{N}_0} \hat{\pi}_{ij}^*(\varepsilon_l) \log \frac{1}{\hat{\pi}_{ij}^*(\varepsilon_l)} - \sum_{(i,j) \in \mathcal{N}_0} \pi_{ij}^* \log \frac{1}{\pi_{ij}^*} \right)$$

$$= H(\hat{\pi}^*(\varepsilon_l)) - H(\pi^*)$$

$$(19)$$

Since the H is continues, taking the limit $l \to +\infty$ in (19) shows that $\langle c, \hat{\pi}^* \rangle = \langle c, \pi^* \rangle$, so that $\hat{\pi}^*$ is a feasible candidate of the following optimization problem

$$\min_{\pi \in \Pi(\mu,\nu)} -H(\pi)$$

$$s.t. \langle c, \pi \rangle = L_c(\mu,\nu).$$
(20)

Dividing by ε_l in (19) we have

$$0 < H(\hat{\pi}^*(\varepsilon_l)) - H(\pi^*) \tag{21}$$

Taking the limits $l \to +\infty$ shows that $H(\pi^*) \leq H(\hat{\pi}^*)$, which shows that $\hat{\pi}^*$ is a solution of (20). Since the solution to the problem (20) is unique by strict convexity of -H, we have $\hat{\pi}^* = \pi^*$ and the whole sequence is converging. Since

 $x \log \frac{1}{x}$ is a continuous and bounded for $x \in [0, 1]$, we have

$$\lim_{\varepsilon \to 0} \min_{\pi \in \Pi(\mu, \nu)} \hat{E}_{\varepsilon}(\pi) = \lim_{\varepsilon \to 0} \sum_{(i,j) \in \mathcal{N}} \pi_{ij}^{*}(\varepsilon) c_{ij} - \lim_{\varepsilon \to 0} \varepsilon \sum_{(i,j) \in \mathcal{N}} \pi_{ij}^{*}(\varepsilon) \log \frac{1}{\pi_{ij}^{*}(\varepsilon)}$$
(22)
$$= \sum_{(i,j) \in \mathcal{N}} \pi_{ij}^{*} c_{ij}$$
$$= \sum_{(i,j) \in \mathcal{N}_{0}} \pi_{ij}^{*} c_{ij} = \langle c, \pi^{*} \rangle = L_{c}(\mu, \nu),$$

which finishes the proof.

A.1. Proof of Theorem 2

We extend the restricted kernel K to the whole space \mathcal{N}_0 . Define

$$\tilde{K}_{ij} := \begin{cases} K_{ij} & (i,j) \in \mathcal{N}, \\ 0 & (i,j) \in \mathcal{N}_0 \setminus \mathcal{N}. \end{cases}$$
 (23)

Since $\operatorname{spt} \pi^* \subset \mathcal{N}$ and \tilde{K}_{ij} is strictly positive for all $(i,j) \in \mathcal{N}$, it is easy to check that $r_i(\tilde{K}) > 0$ for all $i \in [n]$ and $c_j(\tilde{K}) > 0$ for all $j \in [m]$, so that the iteration in Algorithm 1 can be extended to the whole space \mathcal{N}_0 with

$$\begin{split} u_i^{(k+1)} &\leftarrow \mu_i/r_i(\tilde{K}v^{(k)}), \text{ for all } i \in [n], \\ v^{(k+1)} &\leftarrow v^{(k)}, k \text{ is even}, \\ v_j^{(k+1)} &\leftarrow \nu_j/c_j(\tilde{K}^Tu^{(k+1)}), \text{ for all } j \in [m], \\ u^{(k+1)} &\leftarrow u^{(k)}, k \text{ is odd}. \end{split} \tag{24}$$

According to the theorem of the RAS algorithm (see [23] Theorem 4.1), the iteration (24) is convergent and outputs a coupling π satisfying $||r(\pi)-\mu||_2+||c(\pi)-\nu||_2<\delta^2$. It is easy to check that $\pi_{ij}=0$ for all $(i,j)\in\mathcal{N}_0\setminus\mathcal{N}$, which shows that $r(\pi)=r^{\mathcal{N}}(\pi)$ and $c(\pi)=c^{\mathcal{N}}(\pi)$. The number of iterations K_δ needed to scale K to accuracy δ satisfies $K_\delta=O(\rho h(\delta)^{-2}\log{(h/s)}),$ where $h=\sum_{(i,j)\in\mathcal{N}_0}\pi_{ij}=\sum_{(i,j)\in\mathcal{N}}\pi_{ij}, \qquad s=\min_{\{(i,j)\in\mathcal{N}_0|\pi_{ij}>0\}}\pi=\min_{(i,j)\in\mathcal{N}}\pi$ and $\rho=\max\{||r(\pi)||_\infty,||c(\pi)||_\infty\}=\max\{||r^{\mathcal{N}}(\pi)||_\infty,||c^{\mathcal{N}}(\pi)||_\infty\}$

A.2. Proof of Theorem 3

Let $\mathcal{N}\subset\mathcal{N}_0$ be a subspace such that $\operatorname{spt}\pi^*\subset\mathcal{N}$. Algorithm 1 with stopping criterion $||r^{\mathcal{N}}(\pi^{(k)})-\mu||_1+||c^{\mathcal{N}}(\pi^{(k)})-\nu||_1<\delta$ outputs a matrix π satisfying $||r^{\mathcal{N}}(\pi)-\mu||_1+||c^{\mathcal{N}}(\pi)-\nu||_1<\delta$ after $O((\delta)^{-2}\log{(h/s)})$ iterations.

Proof. (Pinskers Inequality). For any probability measures p and q, $||p-q||_1 \le \sqrt{2\mathrm{KL}(p|q)}$.

Let k^* be the first iteration such that $||r^{\mathcal{N}}(\pi^{(k^*)}) - \mu||_1 + ||c^{\mathcal{N}}(\pi^{(k^*)}) - \nu||_1 < \delta$. Pinskers inequality implies that for

any $k < k^*$, we have

$$\delta^{2} < \left(||r^{\mathcal{N}}(\pi^{(k)}) - \mu||_{1} + ||c^{\mathcal{N}}(\pi^{(k)}) - \nu||_{1} \right)^{2} < \left(\sqrt{2 \text{KL}(\mu | r^{\mathcal{N}}(\pi^{(k)}))} + \sqrt{2 \text{KL}(\nu | c^{\mathcal{N}}(\pi^{(k)}))} \right)^{2}$$

Assume without loss of generality that k is even, so that $c^{\mathcal{N}}(\pi^{(k)}) = \nu$ and $r^{\mathcal{N}}(\pi^{(k-1)}) = \mu$, which shows that

$$\left(\sqrt{2\mathrm{KL}(\mu|r^{\mathcal{N}}(\pi^{(k)}))} + \sqrt{2\mathrm{KL}(\nu|c^{\mathcal{N}}(\pi^{(k)}))}\right)^{2}$$

$$= 2\mathrm{KL}(\mu|r^{\mathcal{N}}(\pi^{(k)}))$$

$$= 2\sum_{i=1}^{n} \mu_{i} \log \frac{\mu_{i}}{r_{i}^{\mathcal{N}}(\pi^{(k)})}$$
(25)

We have

$$\begin{split} \sum_{i=1}^{n} \mu_{i} \log \frac{\mu_{i}}{r_{i}^{\mathcal{N}}(\pi^{(k)})} &= \sum_{i=1}^{n} \mu_{i} \log \frac{\mu_{i}}{\sum\limits_{\{j \mid (i,j) \in \mathcal{N}\}} u_{i}^{(k)} K_{ij} v_{j}^{(k)}} \\ &= \sum_{i=1}^{n} \mu_{i} \log \frac{\mu_{i}}{u_{i}^{(k)} \sum\limits_{\{j \mid (i,j) \in \mathcal{N}\}} K_{ij} v_{j}^{(k)}} \\ &= \sum_{i=1}^{n} \mu_{i} \log \frac{u_{i}^{(k+1)}}{u_{i}^{(k)}} \\ &= \sum_{i=1}^{n} \mu_{i} \log \frac{u_{i}^{(k+1)}}{u_{i}^{(k)}} + \sum_{j=1}^{m} \nu_{j} \log \frac{v_{j}^{(k+1)}}{v_{j}^{(k)}}. \end{split}$$

So that

$$\frac{1}{2}\delta^2 < \sum_{i=1}^n \mu_i \log \frac{u_i^{(k+1)}}{u_i^{(k)}} + \sum_{i=1}^m \nu_j \log \frac{v_j^{(k+1)}}{v_i^{(k)}}.$$
 (26)

Equation (26) holds for k is odd. By taking $k = 1, \dots, k+1$ and adding all the equality together we have

$$\frac{1}{2}k\delta^{2} < \sum_{i=1}^{n} \mu_{i} \log u_{i}^{(k+1)} + \sum_{j=1}^{m} \nu_{j} \log v_{j}^{(k+1)} - \sum_{i=1}^{n} \mu_{i} \log u_{i}^{(1)} - \sum_{j=1}^{m} \nu_{j} \log v_{j}^{(1)}.$$
(27)

Define the Lyapunov function $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

$$f(x,y) = \sum_{(i,j) \in \mathcal{N}} K_{ij} e^{x_i + y_j} - \sum_{i=1}^n \mu_i x_i - \sum_{j=1}^m \nu_j y_j \quad (28)$$

Let $f(x^*, y^*)$ the global minimum of f, we have

$$\sum_{(i,j)\in\mathcal{N}} K_{ij} e^{x_i^* + y_j^*} = 1, \tag{29}$$

$$x_i^* + y_j^* \le \log(\frac{1}{\epsilon}). \forall i \in [n], \forall j \in [m].$$
 (30)

So that

$$\frac{1}{2}k\delta^{2} < \sum_{i=1}^{n} \mu_{i} \log u_{i}^{(k+1)} + \sum_{j=1}^{m} \nu_{i} \log v_{i}^{(k+1)}
- \sum_{i=1}^{n} \mu_{i} \log u_{i}^{(1)} - \sum_{j=1}^{m} \nu_{i} \log v_{i}^{(1)}
= f(u^{(1)}, v^{(1)}) - f(u^{(k+1)}, v^{(k+1)})
\leq f(u^{(1)}, v^{(1)}) - f(x^{*}, y^{*})
= (1 - \sum_{i=1}^{n} \mu_{i} \log u^{(1)}) - (1 - \sum_{i=1}^{n} \mu_{i} x_{i}^{*} - \sum_{j=1}^{m} \nu_{j} y_{i}^{*})
\leq - \sum_{i=1}^{n} \mu_{i} \log \frac{\mu_{i}}{\sum_{j=1}^{m} K_{ij}} + \log \frac{1}{s}
= \sum_{i=1}^{n} \mu_{i} \log \frac{\sum_{j=1}^{m} K_{ij}}{\mu_{i}} + \log \frac{1}{s}
\left(\operatorname{since} \sum_{i=1}^{n} \mu_{i} x_{i}^{*} + \sum_{j=1}^{m} \nu_{j} y_{i}^{*} \leq \log \frac{1}{v}\right)
\leq \log \sum_{i=1}^{n} \left(\mu_{i} \frac{\sum_{j=1}^{m} K_{ij}}{\mu_{i}}\right) + \log(\frac{1}{s})
(Jensen inequality)
= \log \frac{h}{s}.$$

So that the inequality (32) implies that we terminate in $* \le 2\delta^{-2} \log(h/s)$ steps, which finishes the proof.

To prove Theorem (4), we state the following lemmas.

Lemma 1 For $\pi \in \Pi(\mu, \nu)$, we have $0 \le H(\pi) \le n \log n$.

Lemma 2 If $\pi_1, \pi_2 \in \mathbb{R}_+^{n \times m}$ are nonnegative matrices and $\lambda \in [0, 1]$, we have

$$H(\lambda \pi_1 + (1 - \lambda)\pi_2) \le \lambda H(\pi_1) + (1 - \lambda)H(\pi_2) + \max\{\|\pi_1\|_1, \|\pi_2\|_1\} \cdot h(\lambda)$$

where
$$h(\lambda) = \lambda \log \frac{1}{\lambda} + (1 - \lambda) \log \frac{1}{1 - \lambda} \quad \forall \lambda, \in [0, 1].$$

Lemma 3
$$h(\lambda) \leq \lambda(\log \frac{1}{\lambda} + 1), \quad \lambda \in [0, 1]$$

Lemma 4 Let π^* be the optimal solution of the unregularized problem, $\hat{\pi}^*(\hat{\varepsilon})$ be the optimal solution of the restricted optimal transport (7). The gap between the π^* and $\hat{\pi}^*(\hat{\varepsilon})$ can be bounded by

$$\|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_1 \le 2\exp(-\Delta/\hat{\varepsilon} + 4\frac{\log(n)}{n^2})$$

Proof. Let V be the vertices of $\Pi(\mu, \nu)$ and $O: \{\pi \in V | \langle \pi, c \rangle = \langle \pi^*, c \rangle \}$ be the set of optimal vertex solution of (3). Let the suboptimal set be defined as $O_s := \{\pi \in A \in A \}$

 $V|\langle \pi, c \rangle > \langle \pi, c \rangle\}$. Since $\hat{\pi}^*(\hat{\varepsilon}) \in \Pi(\mu, \nu)$, there exist $\lambda \in (0, 1), \pi^* \in V$ and $\tilde{\pi} \in \operatorname{span}(O_s)$ such that

$$\hat{\pi}^*(\hat{\varepsilon}) = (1 - \gamma)\pi^* + \gamma \tilde{\pi}.$$

We define the gap between $\hat{\pi}^*(\hat{\varepsilon})$ and π^* by

$$g(\varepsilon) := \langle \hat{\pi}^*(\hat{\varepsilon}), c \rangle - \langle \pi^*, c \rangle$$

The lower bound of $q(\varepsilon)$ could be estimated by

$$\begin{array}{ll} g(\varepsilon) &= \langle \hat{\pi}^*(\hat{\varepsilon}), c \rangle - \langle \pi^*, c \rangle \\ &= \langle \hat{\pi}^*(\hat{\varepsilon}) - \pi^*, c \rangle \\ &= \gamma \langle \pi^* - \tilde{\pi}, c \rangle \geq \gamma \Delta \end{array}$$

The upper bound of $g(\varepsilon)$ could be estimated by

$$g(\varepsilon) = \langle \hat{\pi}^*(\hat{\varepsilon}), c \rangle - \langle \pi^*, c \rangle \leq \varepsilon H(\hat{\pi}^*(\hat{\varepsilon})) - \varepsilon H(\pi^*).$$
 (32)

According to Lemma2, we have

$$H(\hat{\pi}^*(\hat{\varepsilon})) = H((1-\gamma)\pi^* + \gamma\tilde{\pi})$$

$$\leq (1-\gamma)H(\pi^*) + \gamma H(\tilde{\pi})$$

$$+ \max\{\|\pi^*\|_1, \|\tilde{\pi}\|_1\}h(\lambda).$$

One can check that $\|\pi^*\|_1 = 1$, so that we have

$$H(\hat{\pi}^*(\hat{\varepsilon})) \le (1 - \gamma)H(\pi^*) + \gamma H(\tilde{\pi}) + h(\lambda). \tag{33}$$

Combining (32) and (33), the upper bound of $g(\varepsilon)/\varepsilon$ could be estimated by

$$\begin{array}{ll} \frac{g(\varepsilon)}{\varepsilon} & \leq H(\hat{\pi}^*(\hat{\varepsilon})) - H(\pi^*) \\ & \leq \gamma |H(\tilde{\pi}) - H(\pi^*)| + h(\gamma). \end{array}$$

According to lemmal and $\gamma \leq \frac{g(\varepsilon)}{\Delta}$, we have

$$\tfrac{g(\varepsilon)}{\varepsilon} \leq \tfrac{g(\varepsilon)}{\Delta} |H(\tilde{\pi}) - H(\pi^*)| + h(\tfrac{g(\varepsilon)}{\Delta}).$$

According to lemma 1 and lemma 3, we have

$$\tfrac{g(\varepsilon)}{\varepsilon} \leq \tfrac{g(\varepsilon)}{\Delta} n \log n + \tfrac{g(\varepsilon)}{\Delta} \log \tfrac{\Delta}{g(\varepsilon)} + \tfrac{g(\varepsilon)}{\Delta},$$

which shows that $\Delta \exp(-\Delta/\varepsilon + n\log n) \geq g(\varepsilon) \geq \Delta \gamma$ and

$$\begin{split} \|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_1 & \leq \gamma \|\pi^* - \tilde{\pi}\|_1 \\ & \leq \gamma \|\pi^*\|_1 + \|\tilde{\pi}\|_1 \\ & \leq 2\Delta \exp(-\Delta/\varepsilon + n\log n) \end{split}$$

A.3. Proof of Theorem 4

Proof. First, we prove that $\Delta>0$, that is, we show $\inf_{\{\pi\in V: \langle c,\pi\rangle>\langle c,\pi^*\rangle\}}\langle c,\pi\rangle-\langle c,\pi^*\rangle>0$. Since the set V is the vertices of the set $\Pi(\mu,\nu)$, so that the set V contains

finite elements, which shows that the set $\{\pi \in V : \langle c, \pi \rangle > \langle c, \pi^* \rangle \}$ has finite elements and we have $\Delta > 0$.

Second, let $s = \min_{\{(i,j) \in \mathcal{N}, \pi_{ij} > 0\}} \pi_{ij}$, we show that for any $\varepsilon \leq \varepsilon_0 < \frac{\Delta}{n \log n - \log(s/2)}$, the following inequality holds:

$$\|\hat{\pi}(\varepsilon)^{(l+1)} - \pi^*\|_1 < \frac{s}{2} + \delta,$$
 (34)

where $\hat{\pi}(\varepsilon)^{(l+1)}$ is the coupling generated by the RestrictedSinkhorn (Algorithm 2, step 5). If the claim (34) does not hold, then there exits some $\hat{\varepsilon} < \frac{\Delta}{n \log n - \log(s/2)}$ such that

$$\|\hat{\pi}(\hat{\varepsilon})^{(l+1)} - \pi^*\|_1 \ge \frac{s}{2} + \delta,$$
 (35)

Let $\hat{\pi}^*(\hat{\varepsilon})$ be the optimal solution of the restricted optimal transport (7), we have

$$\|\hat{\pi}(\hat{\varepsilon})^{(l+1)} - \pi^*\|_{1} = \|\hat{\pi}(\hat{\varepsilon})^{(l+1)} - \hat{\pi}^*(\hat{\varepsilon}) + \hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_{1}$$

$$\leq \|\hat{\pi}(\hat{\varepsilon})^{(l+1)} - \hat{\pi}^*(\hat{\varepsilon})\|_{1}$$

$$+ \|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_{1}$$

$$\leq \delta + \|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_{1}$$
(36)

According to Lemma 4, we have

$$\|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_1 \le 2 \exp(-\Delta/\hat{\varepsilon} + n \log n)$$

So that we have

$$\|\hat{\pi}^*(\hat{\varepsilon}) - \pi^*\|_1 \leq \exp(-\frac{\Delta}{\hat{\varepsilon}} + n \log n) < \exp(-\frac{\Delta}{\frac{\Delta}{n \log n - \log(s/2)}} + n \log n)$$

$$= \exp(\log(s/2))$$

$$= s/2$$
(37)

By combing (36) and (37), we have

$$\|\hat{\pi}(\hat{\varepsilon})^{(l+1)} - \pi^*\|_1 < \delta + \frac{s}{2},$$
 (38)

which contradicts the result of (35). So the claim (35) is incorrect and claim (34) holds.

So that for any $(i, j) \in \operatorname{spt} \pi$, we have

$$\begin{array}{ll} \hat{\pi}_{ij}(\varepsilon)^{(l+1)} & \geq \pi^*_{ij} - \frac{s}{2} - \delta \\ & \geq s - \frac{s}{2} - \delta \\ & \geq \frac{s}{2} - \delta. \end{array}$$

Finally, let $\theta < (\frac{s}{2} - \delta)^{(1+c)}$, we have

$$K_{ij}^{\mathcal{N}^{(l)}}(\varepsilon^{(l+1)}, \alpha^{(l+1)}, \beta^{(l+1)}) = \exp(\log(\hat{\pi}_{ij}^{(l+1)})(1+c))$$

$$\geq \exp(\log(\frac{s}{2} - \delta)(1+c))$$

$$= (\frac{s}{2} - \delta)^{(1+c)} > \theta,$$

which shows that $K_{ij}^{\mathcal{N}^{(l)}}(\varepsilon^{(l+1)}, \alpha^{(l+1)}, \beta^{(l+1)}) > \theta$ for any $(i, j) \in \operatorname{spt}\pi$.