
A. Differential Privacy
Differential Privacy (DP) [12]. A randomized mechanismM is (ε, δ)-DP, if

Pr[M(X) ∈ O] ≤ eε · Pr [M (X ′) ∈ O] + δ (9)

holds for all output O ⊆ Range(M) and for any adjacent datasets X and X ′ that differ from each other with only one record.
Here, the privacy budget, ε, is the upper bound on the privacy loss corresponding toM, and δ is the probability of violating
the DP constraint. Usually, (ε, 0)-DP is also written as ε-DP.

In practice, Gaussian mechanism can be used to achieve (ε, δ)-DP while Laplace mechanism and randomized response can
be used to achieve ε-DP. As DPGEN relies on randomized response to reach ε-DP guarantee, we only describe the randomized
response below.

Randomized Response (RR). Given a value v ∈ [k], where [k] , {1, . . . , k}. The randomized response is defined as:

∀y ∈ [k],Pr[RRk,ε(v) = y] =

{
p = eε

eε+k−1 , if y = v

p′ = 1
eε+k−1 , if y 6= v

RRk,ε(·) achieves ε-DP since p
p′ = eε. In fact, the function H(·) in Eq. (8) is equivalent to RRk,ε(·). DP is featured by

its sequential composition, parallel composition, and post-processing properties. We have a brief description of them below.
Sequential Composition. GivenM1(·) that satisfies ε1-DP andM2(·) that satisfies ε2-DP. Then,M1 ◦M2 satisfies

(ε1 + ε2)-DP, where ◦ denote the composition operator.
Parallel Composition. Assume that eachMi satisfies ε-DP. Let Xi be arbitrary disjoint subsets of the domain of X . The

sequence ofMi(X ∩Xi) satisfies ε-DP.
Post-processing. IfM satisfies (ε, δ)-DP, then F ◦M will also satisfy (ε, δ)-DP for any function F independent of the

sensitive dataset, where ◦ denote the composition operator.

B. DPGEN satisfies ε-Differential Privacy (ε-DP)
Here, we provide a rigorous proof that DPGEN satisfies satisfies ε-DP. The roadmap goes as follows.

1. We first recall the setting of DPGEN.

2. We prove that the mechanismM that perturbs the recovery direction required by the energy-guided
network (see the rightmost network in Figure 1 of our main text) satisfies ε-DP in Lemma 4.

3. We prove that mechanismM, even when the coverage of the RR is limited to k candidates, satisfies
ε-DP in Lemma 5.

4. After all of the above procedures, we will make a conclusion that DPGEN satisfies ε-DP in Theo-
rem 1.

The algorithmic procedure of DPGEN is shown in Algorithm 1. We notice a difference between DPGEN described in
Section 4.2 and Algorithm 1. The k − 1 candidate images for RR in H(·) are inherently chosen by using k nearest neighbors
(kNN) approach in the main text of Section 4.2, while the k − 1 candidate images for RR in H(·) are chosen by using
probabilistic k nearest neighbors (kNN) approach in Line 20 of Algorithm 1. In fact, they can be proved equivalent in the
context of DP.

Setting. Let X = {xi ∈ RH×W×C : i = 1, . . . ,m} be a sensitive dataset, where H is the height, W is the width and C is
the channel of an image. One of the components in DPGEN isM : X → X , whereM(x) , (H ◦ f)(x), and let O be the
output range ofM. Here, instead of the H(·) defined in Eq. (8), in the proofs of Lemmas 1∼4, we here temporarily consider
H(·) below:

Pr
[
H(x̃v) = xry

]
=


eε

eε +m− 1
, if y = v

1

eε +m− 1
, if y 6= v

. (10)

In this sense,M takes as input a training image and outputs a random training image from the training dataset (consisting
of our sensitive images). More precisely, we have the probability Pr [M(xi) = xri ] = Pr [H(x̃i) = xri ] = eε/(eε +m− 1),



Algorithm 1: DPGEN

1 Let X = {x1, . . . , xm}, Σ = {σ(0), . . . , σ(`)} and W = ∅, T = ∅, V = ∅
2 for each image xi ∈ X do
3 sample σi from Σ
4 x̃i = f(xi) + zi; zi ∼ N (0, σi)

5 X̃ = X̃ ∪ x̃i
6 while |W | < m do
7 for each image xi ∈ X do
8 sample x̃ from X̃ uniformly
9 νi = max |x̃− xi|/3

10 V = V ∪ νi
11 for each image xi ∈ X do
12 σi is sampled from {σ′ : σ′ ≥ maxV ;σ′ ∈ Σ}
13 j ∼ {1 . . .m}
14 if j /∈W then
15 W = W ∪ {j}
16 x̃ is assigned to be x̃j
17 T = T ∪ (x̃j , xj , σj)

18

19 for each (x̃i, xi, σi) ∈ T do
20 Define Xi

k as the set of k random samples from X with probability p(xi) = exp(−d∞(xi,x̃i,σi))∑m
a=1 exp(−d∞(xa,x̃i,σa))

with

d∞(x, x̃, σ) , max |x̃−x|
σ

21 Calculate xri = H(x̃i) over Xi
k

22 Calculate dri =
x̃i−xri
σ2
i

and Pr [M(xj) = xri ] = Pr [H(x̃j) = xri ] = 1/(eε + m − 1). However, since DPGEN allows the recovery direction
dr = (x̃− xr)/σ2 to train the neural network, it requires to calculate the probability:

Pr [dr = (x̃ii − xri )/σi] = Pr [xri , σi, x̃ii, x̃, xi]

= Pr [H(x̃ii) = xri ] · Pr [σi|x̃ii, xi] · Pr [x̃ii|xi] · Pr [xi|x̃] · Pr[x̃],
(11)

and
Pr [dr = (x̃ij − xri )/σi] = Pr [xri , σi, x̃ij , x̃, xj ]

= Pr [H(x̃ij) = xri ] · Pr [σi|x̃ij , xj ] · Pr [x̃ij |xj ] · Pr [xj |x̃] · Pr[x̃].
(12)

Here x̃ii and x̃ij are equivalent to x̃i, the second subscript is used to distinguish the input sources. For example, if the
algorithm 1 uses the true image xi to pair the noisy image x̃ and compute the true standard deviation σi, then x̃ii means that
x̃i is paired by the true image xi. And x̃ij means that the adversary thinks that x̃i is paired by another image xj . Note that the
superscript r of xri is used to distinguish this xi is responded by the RR mechanism.

Lemma 1. Given a noisy image x̃, if the algorithm 1 is used to obtain the pairs (x̃i, xi, x̃), (x̃j , xj , x̃) of any two images
xi, xj , then the joint probability Pr [x̃i, xi, x̃] = Pr [x̃j , xj , x̃] = q/m.

Proof. According to Bayes’ theorem, the joint probability Pr [x̃i, xi, x̃] = Pr [x̃i|xi, x̃] · Pr [xi|x̃] · Pr [x̃]. In the algorithm
1 , we sample x̃ uniformly, and assume that the probability is q. Then given x̃, the xi is also sampled uniformly, so
Pr [xi|x̃] = Pr [xi] = 1/m. Since x̃ is assigned directly to xi after xi is sampled, thus Pr [x̃i|xi, x̃] = 1. Likewise,
Pr [x̃j |xj , x̃] = 1, and Pr [xj |x̃] = Pr [xj ] = 1/m. Therefore, Pr [x̃i, xi, x̃] = Pr [x̃j , xj , x̃] = q/m according to the joint
probability, thus finishing the proof.

Lemma 2. Given a noisy image x̃, if the standard deviation σi, σj of any two images xi, xj are sampled by the algorithm 1 ,
then Pr [σi|x̃, xi] = Pr [σj |x̃, xj ] = 1/|S|.



Proof. Since σi, σj are sampled from S = {σ′ : σ′ ≥ maxV ;σ′ ∈ Σ}, Pr [σi|x̃, xi] = Pr [σj |x̃, xj ] = 1/|S|.

Lemma 3. For any two images xi and xj , xi 6= xj , the mechanismM satisfies

Pr [M(xi) = xri ] ≤ eε · Pr [M(xj) = xri ] . (13)

Proof. We know that the probability thatM takes as input xi and returns xri =M(xi) is eε/(eε + m − 1). Note that the
superscript r of xri is used to distinguish this xi is responded by the RR mechanism. We also know that the probability thatM
takes as input xj but returns xri is 1/(eε +m− 1). Hence, Pr [M(xi) = xri ] /Pr [M(xj) = xri ] ≤ eε.

Lemma 4. The sequence ofM(xi), denoted asM(X), satisfies ε-DP.

Proof. Our proof derives from the parallel composition of DP. Consider two adjacent datasets X , X ′ that differ only by one
image data. LetM be a mechanism which accesses a disjoint subset of our training dataset. In our case, each training image
constitutes a disjoint subset of the training dataset. Therefore, the probability of returningM(X) from sequence ofM(xi) is

Pr[M(X) ∈ O] =
∏
i

Pr [M (xi) = xri ] . (14)

After applying Lemma 3 to Eq. (14), we can derive∏
i

Pr [M (xi) = xri ]

≤
∏
i

Pr [M (x′i) = xri ]×
∏
i

exp (ε · |xi ⊕ x′i|)

= Pr[M(X ′) ∈ O]× exp(ε · |X ⊕X ′|),

(15)

where xi ∈ X,x′i ∈ X ′, and the term ⊕ represents XOR. As X,X ′ only differs in one image, we have |X ⊕X ′| = 1. After
the re-arrangement, Eq. (15) can be proved to be ε-DP,

Pr[M(X) ∈ O] ≤ eε · Pr[M(X ′) ∈ O].

An inherent assumption behind Lemma 4 is that the randomized response has to assign either probability eε/(eε +m− 1)
or probability 1/(eε + m − 1) to each training image. As the number of training images or the batch size is too large, it
follows that the number of candidates in the randomized response will also be large. Thus, the probability of each candidate
to be selected is nearly uniformly distributed, which leads to a significant loss of information of the training images. In the
following, we alleviate this problem by selecting and considering only k candidates in the randomized response by using
prior probability. Note that in Section 4.1 of the main text, we mention that {xj : max |x̃i − xj |/σj ≤ β, j ∈ [m]} with the
smallest k values are selected as the k candidates for the randomized response.

Lemma 5. Given that each data is processed byM = H ◦ f , the mechanismM with H(·) on k candidate training images
satisfies ε-DP.

Proof. Given a noisy image x̃i and a modified infinity norm d∞(x, x̃, σ) = max |x̃−x|/σ to calculate the k candidates fromm
training images, where the sampling probability is defined as p(xi) = exp(−d∞(xi, x̃i, σi))/

∑m
a=1 exp(−d∞(xa, x̃i, σa)).

Let Xi
k be the sampled k images from x̃i, so that given the true image xi and its paired noisy image x̃i, the probability of

sampled k images is p(Xi
k|xi) =

∑k
a=1 p(xa), and xa ∈ Xi

k. While the probability that the adversary thinks the noisy image
x̃i is paired with xj and produce Xi

k is p(Xi
k|xj), xi 6= xj . Thus, the probability thatM takes as input xi and returns xri from

the k candidates is:
Pr [M(xi) = xri ] =

eε

eε + k − 1
· p(Xi

k|xi). (16)

Similarly, the probability thatM takes as input xj but returns xi from the k candidates is:

Pr [M(xj) = xri ] =
1

eε + k − 1
· p(Xi

k|xj). (17)



No matter the noisy image x̃i is paired by xi or xj , the distance between x̃i and any element from Xi
k is fixed, so p(Xi

k|xi) =
p(Xi

k|xj). Therefore, derived from Lemma 3, the ratio of the probability of returning xri from the k candidates calculated
fromM is:

Pr [M(xi) = xri ] ≤ eε · Pr [M(xj) = xri ] . (18)

Finally, we follow lemma 4 to prove the claim:

Pr[M(X) ∈ O] =
∏
i

Pr [M (xi) ∈ O]

≤
∏
i

Pr [M (x′i) ∈ O] · exp(ε · |X ⊕X ′|)

= exp(ε) · Pr[M(X ′) ∈ O].

(19)

Theorem 1. DPGEN satisfies ε-DP.

Proof. Since DPGEN allows to train the neural network with noisy image x̃ and recovery direction dr = (x̃− xr)/σ2, it is
necessary to calculate the joint probability in order to clarify the association between all involved variables and the training
images. For brevity of the proof, we let K(x̃, x) = (x̃−M(x))/σ(x̃, x) = (x̃−H(x̃))/σ(x̃, x) = (x̃− xr)/σ(x̃, x), where
σ(x̃, x) means its dependence on x̃ and x. In addition, letR be the range of the output of the K, we have

Pr
[
K(X̃,X) ∈ R

]
=
∏

Pr [x̃ = x̃ii, d
r = (x̃ii − xri )/σi]

=
∏

Pr [H(x̃ii) = xri ] · Pr [σi|x̃ii, xi] · Pr [x̃ii|xi, x̃] · Pr [xi|x̃] · Pr [x̃]

=
∏

Pr [H(x̃ii) = xri ] · 1/|S| · q/m

≤
∏

Pr [H(x̃ij) = xri ] · Pr [σi|x̃ij , xj ] · Pr [x̃ij |xj , x̃] · Pr [xj |x̃] · Pr [x̃] · exp (ε · |X ⊕X ′|)

=
∏

Pr [H(x̃ij) = xri ] · 1/|S| · q/m · exp (ε · |X ⊕X ′|)

= exp(ε) · Pr
[
K(X̃,X ′) ∈ R

]
.

Figure 9. Bayesian Network representation of our method.

In the above proof, the second line can reference to Figure 9 for better understanding. The probability Pr [x̃ii|xi, x̃] ·
Pr [xi|x̃] · Pr [x̃] and Pr [x̃ij |xj , x̃] · Pr [xj |x̃] · Pr [x̃] are both equal to q/m is from Lemma 1. Furthermore, the probability
Pr [σi|x̃ii, xi] and Pr [σi|x̃ij , xj ] are both equal to 1/|S| is from Lemma 2. Finally, from Lemma 4, we can arrive at a
conclusion that DPGEN satisfies ε-DP, which is the statement of Theorem 1.



Figure 10. The architecture of classifier used in Section 5.

C. The Architecture of the Classifier
Figure 10 shows the architecture of the classifier used in our experiments for the downstream classification task.

D. Backbone NN
The NN in (S3) of Figure 1 is RefineNet [31]. The architecture of RefineNet used in our setting is shown in Figure 6.

3× 3 Conv2D, 128
ResBlock, 128
ResBlock, 128

ResBlock down, 256
ResBlock, 256

ResBlock down, 256 dilation 2
ResBlock, 256

dilation 2
ResBlock down, 256

dilation 4
ResBlock, 256

dilation 4
RefineBlock, 256
RefineBlock, 256
RefineBlock, 128
RefineBlock, 128
3× 3 Conv2D, 3

Table 6. The architecture of RefineNet [31] used in our experiments.

E. Technical Explanation
The connection among RR, MCMC, and NN.The NN provides the direction of movement required by MCMC (also

shown in the caption of Figure 2b). In particular, the connection between NN and MCMC is shown in Figure 2, where the
gradient of x(t) over log-likelihood, ∇x log qθ

(
x(t)
)
, is parameterized by an NN with the parameter θ. Here, the input of NN

is x(t) and the NN is trained to generate the gradient that points to the position with the largest log-likelihood (this position is
likely to be the true image), with qθ being an approximation of true data distribution. Notably, the whole process in Figure 2b
is MCMC.

On the other hand, one needs the labeled dataset (gradients as the label) to ensure that the NN outputs the direction of
movement required by MCMC. The RR used inM is aimed to ensure that the dataset satisfies DP (stated in Theorem 1, and
the proof is provided in Supplementary Material). Once the dataset satisfies DP, the NN training can be seen as post-processing
of DP, and thus the NN output also meets DP. In conclusion, the NN output satisfying DP (achieved by RR) makes MCMC
differentially private.

How MCMC is approximated by NN. MCMC can be regarded as a series of movements specified by gradients. The
loss function in Eq. (7) used in the NN training describes how NN (especially, the gradient parameterized by the NN with



parameter θ) approximates the actual gradient (x̃− x) /σ2 that points to the true input image x from noisy image x̃. In other
words, the loss function in Eq. (7) is designed such that the output of NN, ∇x log qθ

(
x(t)
)
, approximates the true gradient,

(x̃− x) /σ2. Therefore, the gradient outputted from the NN can be used by MCMC to point to the true input image x.
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