
Supplementary Material for EPro-PnP: Generalized End-to-End Probabilistic
Perspective-n-Points for Monocular Object Pose Estimation

Hansheng Chen,1,2,* Pichao Wang,2,† Fan Wang,2 Wei Tian,1,† Lu Xiong,1 Hao Li2

1School of Automotive Studies, Tongji University 2Alibaba Group
hanshengchen97@gmail.com {tian wei, xiong lu}@tongji.edu.cn

{pichao.wang, fan.w, lihao.lh}@alibaba-inc.com

A. Levenberg-Marquardt PnP Solver
For scalability, we have implemented a PyTorch-based

batch Levenberg-Marquardt (LM) PnP solver. The imple-
mentation generally follows the Ceres solver [1]. Here, we
discuss some important details that are related to the pro-
posed Monte Carlo pose sampling and derivative regular-
ization.

A.1. Adaptive Huber Kernel

To robustify the weighted reprojection errors of various
scales, we adopt an adaptive Huber kernel with a dynamic
threshold δ for each object, defined as a function of the
weights w2D

i and 2D coordinates x2D
i :

δ = δrel

∥∥w̄2D
∥∥

1

2

(
1

N − 1

N∑
i=1

∥∥x2D
i − x̄2D

∥∥2

)1
2

, (13)

with the relative threshold δrel as hyperparameter, and the
mean vectors w̄2D = 1

N

∑N
i=1 w

2D
i , x̄

2D = 1
N

∑N
i=1 x

2D
i .

A.2. LM Step with Huber Kernel

Adding the Huber kernel influences every related ele-
ment from the likelihood function to the LM iteration step
and derivative regularization loss. Thanks to PyTorch’s au-
tomatic differentiation, the robustified Monte Carlo KL di-
vergence loss does not require much special handling. For
the LM solver, however, the residual F (y) (concatenated
weighted reprojection errors) and the Jacobian matrix J
have to be rescaled before computing the robustified LM
step [14].

The rescaled residual block f̃i(y) and Jacobian block
J̃i(y) of the i-th point pair are defined as:

f̃i(y) =
√
ρ′ifi(y), (14)

J̃i(y) =
√
ρ′iJi(y), (15)

*Part of work done during an internship at Alibaba Group.
†Corresponding authors: Pichao Wang, Wei Tian.

where

ρ′i =


1, ‖fi(y)‖ ≤ δ,

δ

‖fi(y)‖
, ‖fi(y)‖ > δ,

(16)

Ji(y) =
∂fi(y)

∂yT . (17)

Following the implementation of Ceres solver [1], the ro-
bustified LM iteration step is:

∆y = −
(
J̃TJ̃ + λD2

)−1

J̃TF̃ , (18)

where

J̃ =

 J̃1(y)
...

J̃N (y)

, F̃ =

 f̃1(y)
...

f̃N (y)

, (19)

D is the square root of the diagonal of the matrix J̃TJ̃ , and
λ is the reciprocal of the LM trust region radius [1].

Note that the rescaled residual and Jacobian affects the
derivative regularization (Eq. (10)), as well as the covari-
ance estimation in the next subsection.

Fast Inference Mode We empirically found that in a
well-trained model, the LM trust region radius can be ini-
tialized with a very large value, effectively rendering the
LM algorithm redundant. We therefore use the simple
Gauss-Newton implementation for fast inference:

∆y = −
(
J̃TJ̃ + εI

)−1

J̃TF̃ , (20)

where ε is a small value for numerical stability.

A.3. Covariance Estimation

During training, the concentration of the AMIS proposal
is determined by the local estimation of pose covariance
matrix Σy∗ , defined as:

Σy∗ =
(
J̃TJ̃ + εI

)−1∣∣∣
y=y∗

, (21)

1

where y∗ is the LM solution that determines the location of
the proposal distribution.

A.4. Initialization

Since the LM solver only finds a local solution, initial-
ization plays a determinant role in dealing with ambiguity.
Standard EPnP [11] initialization can handle the dense cor-
respondence network trained on the LineMOD [9] dataset,
where ambiguity is not noticeable. For the deformable cor-
respondence network trained on the nuScenes [4] dataset
and more general cases, we implement a random sampling
algorithm analogous to RANSAC, to search for the global
optimum efficiently.

Given the N -point correspondence set X ={
x3D
i , x

2D
i , w

2D
i

∣∣ i = 1 · · ·N
}

, we generate M subsets
consisting of n corresponding points each (3 ≤ n < N),
by repeatedly sub-sampling n indices without replacement
from a multinomial distribution, whose probability mass
function p(i) is defined by the corresponding weights:

p(i) =

∥∥w2D
i

∥∥
1∑N

i=1

∥∥w2D
i

∥∥
1

. (22)

From each subset, a pose hypothesis can be solved via the
LM algorithm with very few iterations (we use 3 iterations).
This is implemented as a batch operation on GPU, and is
rather efficient for small subsets. We take the hypothesis
of maximum log-likelihood log p(X|y) as the initial point,
starting from which subsequent LM iterations are computed
on the full set X .

Training Mode During training, the LM PnP solver is uti-
lized for estimating the location and concentration of the
initial proposal distribution in the AMIS algorithm. The
location is very important to the stability of Monte Carlo
training. If the LM solver fails to find the global optimum
and the location of the local optimum is far from the true
pose ygt, the balance between the two opposite signed terms
in Eq. (5) may be broken, leading to exploding gradient in
the worst case scenario. To avoid such problem, we adopt
a simple initialization trick: we compare the log-likelihood
log p(X|y) of the ground truth ygt and the selected hypoth-
esis, and then keep the one with higher likelihood as the
initial state of the LM solver.

B. Details on Monte Carlo Pose Sampling
B.1. Proposal Distribution for Position

For the proposal distribution of the translation vector
t ∈ R3, we adopt the multivariate t-distribution, with the
following probability density function (PDF):

qT(t) =
Γ
(
ν+3

2

)
Γ
(
ν
2

)√
ν3π3|Σ|

(
1 +

1

ν
‖t− µ‖2Σ

)− ν+3
2

, (23)

where ‖t − µ‖2Σ = (t − µ)TΣ−1(t − µ), with the location
µ, the 3×3 positive definite scale matrix Σ, and the degrees
of freedom ν. Following [6], we set ν to 3. Compared to
the multivariate normal distribution, the t-distribution has a
heavier tail, which is ideal for robust sampling.

The multivariate t-distribution has been implemented in
the Pyro [2] package.

Initial Parameters The initial location and scale is de-
termined by the PnP solution and covariance matrix, i.e.,
µ ← t∗,Σ ← Σt∗ , where Σt∗ is the 3×3 submatrix of the
full pose covariance Σp∗ . Note that the actual covariance
of the t-distribution is thus ν

ν−1Σt∗ , which is intentionally
scaled up for robust sampling in a wider range.

Parameter Estimation from Weighted Samples To up-
date the proposal, we let the location µ and scale Σ be
the first and second moment of the weighted samples (i.e.,
weighted mean and covariance), respectively.

B.2. Proposal Distribution for 1D Orientation

For the proposal distribution of the 1D yaw-only orienta-
tion θ, we adopt a mixture of von Mises and uniform distri-
bution. The von Mises is also known as the circular normal
distribution, and its PDF is given by:

qVM(θ) =
exp (κ cos (θ − µ))

2πI0(κ)
, (24)

where µ is the location parameter, κ is the concentration
parameter, and I0(·) is the modified Bessel function with
order zero. The mixture PDF is thus:

qmix(θ) = (1− α)qVM(θ) + αquniform(θ), (25)

with the uniform mixture weight α. The uniform compo-
nent is added in order to capture other potential modes un-
der orientation ambiguity. We set α to a fixed value of 1/4.

PyTorch has already implemented the von Mises distri-
bution, but its random sample generation is rather slow. As
an alternative we use the NumPy implementation for ran-
dom sampling.

Initial Parameters With the yaw angle θ∗ and its vari-
ance σ2

θ∗ from the PnP solver, the parameters of the von
Mises proposal is initialized by µ← θ∗, κ← 1

3σ2
θ∗

.

Parameter Estimation from Weighted Samples For the
location µ, we simply adopt its maximum likelihood esti-
mation, i.e., the circular mean of the weighted samples. For
the concentration κ, we first compute an approximated esti-
mation [7] by:

κ̂ =
r̄(2− r̄2)

1− r̄2
, (26)

where r̄ =
∥∥∥∑j vj [sin θj , cos θj]

T/
∑
j vj

∥∥∥ is the norm of
the mean orientation vector, with the importance weight vj
for the j-th sample θj . Finally, the concentration is scaled
down for robust sampling, such that κ← κ̂/3.

2

B.3. Proposal Distribution for 3D Orientation

Regarding the quaternion based parameterization of 3D
orientation, which can be represented by a unit 4D vector l,
we adopt the angular central Gaussian (ACG) distribution
as the proposal. The support of the 4-dimensional ACG
distribution is the unit hypersphere, and the PDF is given
by:

qACG(l) =
(lTΛ−1l)−2

S4|Λ|
1
2

, (27)

where S4 = 2π2 is the 3D surface area of the 4D sphere,
and Λ is a 4×4 positive definite matrix.

The ACG density can be derived by integrating the zero-
mean multivariate normal distributionN (0,Λ) along the ra-
dial direction from 0 to inf . Therefore, drawing samples
from the ACG distribution is equivalent to sampling from
N (0,Λ) and then normalizing the samples to unit radius.

Initial Parameters Consider l∗ to be the PnP solution
and Σ−1

l∗ to be the estimated 4×4 inverse covariance matrix.
Note that Σ−1

l∗ is only valid in the local tangent space with
rank 3, satisfying l∗TΣ−1

l∗ l
∗ = 0. The initial parameters are

determined by:
Λ← Λ̂ + α|Λ̂| 14 I, (28)

where Λ̂ =
(
Σ−1
l∗ + I

)−1
, and α is a hyperparameter that

controls the dispersion of the proposal for robust sampling.
We set α to 0.001 in the experiments.

Parameter Estimation from Weighted Samples Based
on the samples lj and weights vj , the maximum likelihood
estimation Λ̂ is the solution to the following equation:

Λ̂ =
4∑
j vj

∑
j

vj lj l
T
j

lTj Λ̂−1lj
. (29)

The solution to Eq. (29) can be computed by fixed-point
iteration [15]. The final parameters of the updated proposal
is determined the same way as in Eq. (28).

C. Details on Derivative Regularization Loss
As stated in the main paper, the derivative regularization

loss Lreg consists of the position loss Lpos and the orienta-
tion loss Lorient.

For Lpos, we adopt the smooth L1 loss based on the Eu-
clidean distance dt = ‖t∗ + ∆t− tgt‖, given by:

Lpos =


d2
t

2β
, dt ≤ β,

dt − 0.5β, dt > β,

(30)

with the hyperparameter β.
For Lorient, we adopt the cosine similarity loss based

on the angular distance dθ. For 1D orientation parameter-
ized by the angle θ, dθ = θ∗ + ∆θ − θgt. For 3D ori-
entation parameterized by the quaternion vector l, dθ =

2 arccos (l∗ + ∆l)Tlgt. The loss function is therefore de-
fined as:

Lorient = 1− cos dθ. (31)

For 3D orientation, after the substitution, the loss function
can be simplified to:

Lorient = 2− 2
(
(l∗ + ∆l)Tlgt

)2
. (32)

For the specific settings of the hyperparameter β and loss
weights, please refer to the experiment configuration code.

D. Details on the Deformable Correspondence
Network

D.1. Network Architecture

The detailed network architecture of the deformable cor-
respondence network is shown in Figure 8. Following de-
formable DETR [17], this paper adopts the multi-head de-
formable sampling. Let nhead be the number of heads and
nhpts be the number of points per head, a total number of
N = nheadnhpts points are sampled for each object. The
sampling locations relative to the reference point are gener-
ated from the object embedding by a single layer of linear
transformation. We set nhead to 8, which yields 256/nhead =
32 channels for the point features.

The point-level branch on the left side of Figure 8 is re-
sponsible for predicting the 3D points x3D

i and correspond-
ing weights w2D

i . The sampled point features are first en-
hanced by the object-level context, by adding the reshaped
head-wise object embedding to the point features. Then, the
features of the N points are processed by the self attention
layer, for which the 2D points are transformed into the Q-K
vectors of positional information. The attention layer is fol-
lowed by standard layers of normalization, skip connection,
and feedforward network (FFN).

Regarding the object-level branch on the right side of
Figure 8, a multi-head attention layer is employed to ag-
gregate the sampled point features. Unlike the original
deformable attention layer [17] that predicts the attention
weights by linear projection of the object embedding, we
adopt the full Q-K dot-product attention with positional
encoding. After being processed by the subsequent lay-
ers, the object-level features are finally transformed into to
the object-level predictions, consisting of the 3D localiza-
tion score, weight scale, 3D bounding box size, and other
optional properties (velocity and attribute). Note that the
attention layer is actually not a necessary component for
object-level predictions, but rather a byproduct of the de-
formable point samples whose features can be leveraged
with little computation overhead.

D.2. Loss Functions for Object-Level Predictions

As in FCOS3D [16], we adopt smooth L1 regression loss
for 3D box size and velocity, and cross-entropy classifica-

3

tion loss for attribute. Additionally, a binary cross-entropy
loss is imposed upon the 3D localization score, with the tar-
get ctgt defined as a function of the position error:

ctgt = Score(‖t∗XZ − tXZgt‖)
= max(0,min(1,−a log ‖t∗XZ − tXZgt‖+ b)), (33)

where t∗XZ is the XZ components of the PnP solution, tXZgt
is the XZ components of the true pose, and a, b are the linear
coefficients. The predicted 3D localization score cpred shall
reflect the positional uncertainty of an object, as a faster
alternative to evaluating the uncertainty via the Monte Carlo
method during inference (Section F.2). The final detection
score is defined as the product of the predicted 3D score and
the classification score from the base detector.

D.3. Auxiliary Loss Functions

To regularize the dense features, we append an auxiliary
branch that predicts the multi-head dense 3D coordinates
and corresponding weights, as shown in Figure 9. Leverag-
ing the ground truth of object 2D boxes, the features within
the box regions are densely sampled via RoI Align [8],
and transformed into the 3D coordinates x3D and weights
w2D via an independent linear layer. Besides, the attention
weights φ are obtained via Q-K dot-product and normalized
along the nhead dimension and across the overlapping region
of multiple RoIs via Softmax.

During training, we impose the reprojection-based aux-
iliary loss for the multi-head dense predictions, formulated
as the negative log-likelihood (NLL) of the Gaussian mix-
ture model [3]. The loss function for each sampled point is
defined as:

Lproj = − log
∑
RoI

nhead∑
k=1

φk|diagw2D
k | exp−1

2
‖fk(ygt)‖2,

(34)
where k is the head index, fk(ygt) is the weighted reprojec-
tion error of the k-th head at the truth pose ygt. In the above
equation, the diagonal matrix diagw2D

k is interpreted as the
inverse square root of the covariance matrix of the normal
distribution, i.e., diagw2D

k = Σ−
1
2 , and the head attention

weight φk is interpreted as the mixture component weight.∑
RoI is a special operation that takes the overlapping re-

gion of multiple RoIs into account, formulating a mixture
of multiple heads and multiple RoIs (see code for details).

Another auxiliary loss is the coordinate regression
loss that introduces the geometric knowledge. Following
MonoRUn [5], we extract the sparse ground truth of 3D co-
ordinates x3D

gt from the 3D LiDAR point cloud. The multi-
head coordinate regression loss for each sampled point with
available ground truth is defined as:

Lregr =

nhead∑
k=1

φkρ
(∥∥x3D

k − x3D
gt

∥∥2
)
, (35)

dense feat
256×h/4×w/4

obj embedding
nobj×256

Deformable Sampling

2D points
nobj×2×N

Multihead Attention

QKVpoint feat
nobj×32×N

Self Attention

Q K V

ref point
nobj×2

obj query

positional
encoding

Add & Norm

FFN & Norm

obj‐level predictions

Add & Norm

FFN

Add & Norm

3D points
nobj×3×N

weights
nobj×2×N

Figure 8. Detailed architecture of the deformable correspondence
network.

dense feat
256×h/4×w/4

obj embedding
nobj×256

Dense RoI Sampling

gt 2D box
nobj×4

obj query

positional
encoding

3D crd
nobj×nhead×3×hRoI×wRoI

weights
nobj×nhead×2×hRoI×wRoI

K
nobj×nhead×32×hRoI×wRoI

Q
nobj×nhead×32

attention weights
nobj×nhead×1×hRoI×wRoI

Figure 9. Architecture of the auxiliary branch. This branch shares
the same weights of Q, K projection with the deformable attention
layer in the lower right of Figure 8.

where ρ(·) is the Huber kernel. Lregr is essentially a
weighted smooth L1 loss (although we write the Huber ker-
nel for convenience in notation).

D.4. Training Strategy

During training, we randomly sample 48 positive object
queries from the FCOS3D [16] detector for each image,
which limits the batch size of the deformable correspon-
dence network to control the computation overhead of the
Monte Carlo pose loss.

E. Additional Results of the Dense Correspon-
dence Network

E.1. Convergence Behavior

The convergence behaviors of EPro-PnP and CDPN [12]
are compared in Figure 10. The original CDPN-Full is

4

ID Method Data NDS mAP
True positive metrics (lower is better)

mATE mASE mAOE mAVE mAAE

A0 Basic EPro-PnP Val 0.425 0.349 0.676 0.263 0.363 1.035 0.196
A1 A0 + coord. regr. Val 0.430 0.352 0.667 0.258 0.337 1.031 0.193

B0 A0 → No reprojection Lproj Val 0.408 0.337 0.721 0.267 0.452 1.113 0.166

C0 A0 → 50% Monte Carlo score Val 0.424 0.350 0.673 0.264 0.373 1.042 0.198
C1 A0 → 100% Monte Carlo score Val 0.424 0.350 0.675 0.264 0.367 1.048 0.199

D0 A1 → Compact network Val 0.434 0.358 0.672 0.264 0.351 0.983 0.181
D1 D0 + TTA Val 0.446 0.367 0.664 0.260 0.320 0.951 0.179

Table 5. Additional results of the deformable correspondence network tested on the nuScenes [4] benchmark.

trained in 3 stages (rotation head – translation head – both
together) with a total of 480 epochs. In contrast, EPro-PnP
with derivative regularization clearly outperforms CDPN-
Full within one stage, and goes further when initialized
from the pretrained first-stage CDPN.

E.2. Inference Time

Compared to the inference pipeline of CDPN-Full [12],
EPro-PnP does not use the RANSAC algorithm or extra
translation head, so the overall inference speed is more than
twice as fast as CDPN-Full (at a batch size of 32), even
though we introduces the iterative LM solver.

Regarding the LM solver itself, inference takes 7.3 ms
for a batch of one object, measured on RTX 2080 Ti GPU,
excluding EPnP [11] initialization. As a reference, the state-
of-the-art pose refiner RePOSE [10] (also based on the LM
algorithm) adds 10.9 ms overhead to the base pose estimator
PVNet [13] at the same batch size, measured on RTX 2080
Super GPU, which is slower than ours. Nevertheless, faster
inference is possible if the number of points N = 64 × 64
is reduced to an optimal level.

F. Additional Experiments on the Deformable
Correspondence Network

F.1. On the Auxiliary Reprojection Loss

As shown in Table 5, removing the auxiliary reprojec-
tion loss in Eq. 34 lowers the 3D object detection accuracy
(NDS 0.408 vs. 0.425). Among the true positive metrics, the
orientation metric mAOE is the most affected. The results
indicate that, although the deformable correspondences can
be learned solely with the end-to-end loss, it is still benefi-
cial to add auxiliary task for further regularization, even if
the task itself does not involve extra annotation.

F.2. On the Uncertainty of Object Pose

The dispersion of the inferred pose distribution reflects
the aleatoric uncertainty of the predicted pose. Previous
work [5] reasons the pose uncertainty by propagating the re-
projection uncertainty learned from a surrogate loss through
the PnP operation, but that uncertainty requires calibration

0
10
20
30
40
50
60
70
80
90

100

0 160 320 480

AD
D(

-S
)0

.1
d

(%
)

Epoch

CDPN w/o trans.
CDPN-Full
EPro-PnP + Reg.
+ Init. from CDPN
+ Long sched.

Figure 10. Testing accuracy vs. training progress on LineMOD.

and is not reliable enough. In our work, the pose uncer-
tainty is learned with the KL-divergence-based pose loss in
an end-to-end manner, which is much more reliable in the-
ory.

To quantitatively evaluate the reliability of the pose un-
certainty in terms of measuring the localization confidence,
a straightforward approach is to compute the 3D localiza-
tion score cMC via Monte Carlo pose sampling, and compare
the resulting mAP against the standard implementation with
3D score cpred predicted from the object-level branch. With
the PnP solution t∗, the sampled translation vector tj , and
its importance weight vj , the Monte Carlo score is com-
puted by:

cMC =
1∑
j vj

∑
j

vjScore
(
‖t∗XZ − tXZj‖

)
, (36)

where the subscript (·)XZ denotes taking the XZ compo-
nents, and the function Score(·) is the same as in Eq. 33.
Furthermore, the final score can also be a mixture of the
two sources, defined as:

cmix = cαMCc
1−α
pred , (37)

where α is the mixture weight.
The evaluation results under different mixture weights

are presented in Table 5. Regarding the mAP metric, the
Monte Carlo score is on par with the standard implementa-
tion (0.350 vs. 0.350 vs. 0.349), indicating that the pose un-
certainty is a reliable measure of the detection confidence.

5

Nevertheless, due to the much longer runtime of inferring
with Monte Carlo pose sampling, training a standard score
branch is still a more practical choice.

F.3. On the Network Redundancy and Potential for
Future Improvement

Since the main concern of this paper is to propose a novel
differentiable PnP layer, we did not have enough time and
resources to fine-tune the architecture and parameters of the
deformable correspondence network at the time of submit-
ting the manuscript. Therefore, the network described in
Sections 4.2 and D.1 was crafted with some redundancy
in mind, being not very efficient in terms of FLOP count,
memory footprint and inference time, leaving large poten-
tial for improvement.

To demonstrate the potential for improvement, we train a
more compact network with lower resolution (stride=8)
for the dense feature map, and the number of points per
head nhpts reduced from 32 to 16, and squeeze the batch of
12 images into 2 RTX 3090 GPUs. As shown in Table 5, the
overall performance is actually slightly better than the orig-
inal version (NDS 0.434 vs. 0.430). Still, a more efficient
architecture is yet to be determined in future work.

Inference Time Regarding the compact network, the av-
erage inference time per frame (comprising a batch of 6
surrounding 1600×6725 images, without TTA) is shown
in Table 6, measured on RTX 3090 GPU and Core i9-
10920X CPU. On average, the batch PnP solver processes
625.97 objects per frame before non-maximum suppression
(NMS).

PyTorch Backbone
& FPN

Heads
PnP Total

FCOS Deform

v1.8.1+cu111 0.195 0.074 0.028 0.026 0.327
v1.10.1+cu113 0.172 0.056 0.025 0.045 0.301

Table 6. Inference time (sec) of the deformable correspondence
network on nuScenes object detection dataset [4]. The PnP solver
(including the random sampling initialization in Section A.4)
works faster (26 ms) with PyTorch v1.8.1, for which the code was
originally developed, while the full model works faster (301 ms)
with PyTorch v1.10.1.

G. Limitation
EPro-PnP is a versatile pose estimator for general prob-

lems, yet it has to be acknowledged that training the net-
work with the Monte Carlo pose loss is inevitably slower
than the baseline. At the batch size of 32, training the CDPN
(without translation head) takes 143 seconds per epoch with
the original coordinate regression loss, and 241 seconds per
epoch with the Monte Carlo pose loss, which is about 70%

5The original size is 1600×900. We crop the images for efficiency.

longer time, as measured on GTX 1080 Ti GPU. However,
the training time can be controlled by adjusting the num-
ber of Monte Carlo samples or the number of 2D-3D corre-
sponding points. In this paper, the choice of these hyperpa-
rameters generally leans towards redundancy.

H. Additional Visualization

input orienta on

Figure 11. Inferred results on LineMOD test set by EPro-PnP with
derivative regularization and pretrained CDPN weights, Part I.

6

input orienta�on

Figure 12. Inferred results on LineMOD test set by EPro-PnP with
derivative regularization and pretrained CDPN weights, Part II.

0 π/2 π 3π/2 2π
Yaw

0

2

4

De
ns
ity

0 π/2 π 3π/2 2π
Yaw

0.0

0.1

0.2

De
ns

ity

0 π/2 π 3π/2 2π
Yaw

0

5

10

De
ns
ity

0 π/2 π 3π/2 2π
Yaw

0.0

0.2

0.4

De
ns

ity

0 π/2 π 3π/2 2π
Yaw

0.0

0.5

1.0

1.5

De
ns

ity

0 π/2 π 3π/2 2π
Yaw

0

2

4

6

De
ns
ity

0 π/2 π 3π/2 2π
Yaw

0

2

4

6

De
ns
ity

0 π/2 π 3π/2 2π
Yaw

0

2

4

De
ns
ity

0 π/2 π 3π/2 2π
Yaw

0.00

0.25

0.50

0.75

De
ns

ity

0 π/2 π 3π/2 2π
Yaw

0.0

0.5

1.0

1.5

De
ns

ity

C
a

r
Tr

u
ck

B
u

s
Tr

a
il

e
r

C
o

n
st

ru
c

o
n

 V
e

h
.

P
e

d
e

st
ri

a
n

M
o

to
rc

y
cl

e
B

ic
y
cl

e
C

o
n

e
B

a
rr

ie
r

backward le" forward rightright

Figure 13. Inferred orientation on nuScenes validation set by the
Basic EPro-PnP.

7

2D points colored by instance 2D points colored by XY component
density of (X: red, Y: green)

Inferred 3D bounding boxes Inferred bounding boxes (red), posiƟon
density (blue), and ground truth bound-

ing boxes (green) in bird’s eye view

Figure 14. Inferred results on nuScenes validation set by the Basic EPro-PnP.

8

I. Notation

Notation Description

x3D
i ∈ R3 Coordinate vector of the i-th 3D object point
x2D
i ∈ R2 Coordinate vector of the i-th 2D image point

w2D
i ∈ R2

+ Weight vector of the i-th 2D-3D point pair
X The set of weighted 2D-3D correspondences
y Object pose
ygt Ground truth of object pose
y∗ Object pose estimated by the PnP solver
R 3×3 rotation matrix representation of object orientation
θ 1D yaw angle representation of object orientation
l Unit quaternion representation of object orientation
t ∈ R3 Translation vector representation of object position

Σy∗ Pose covariance estimated by the PnP solver
J Jacobian matrix
J̃ Rescaled Jacobian matrix
F Concatenated vector of weighted reprojection errors of all points
F̃ Concatenated vector of rescaled weighted reprojection errors of all points
π(·) : R3 → R2 Camera projection function
fi(y) ∈ R2 Weighted reprojection error of the i-th correspondence at pose y
ri(y) ∈ R2 Unweighted reprojection error of the i-th correspondence at pose y
ρ(·) Huber kernel function
ρ′i The derivative of the Huber kernel function of the i-th correspondence
δ The Huber threshold

p(X|y) Likelihood function of object pose
p(y) PDF of the prior pose distribution
p(y|X) PDF of the posterior pose distribution
t(y) PDF of the target pose distribution

q(y), qt(y) PDF of the proposal pose distribution (of the t-th AMIS iteration)
yj , y

t
j The j-th random pose sample (of the t-th AMIS iteration)

vj , v
t
j Importance weight of the j-th pose sample (of the t-th AMIS iteration)

i Index of 2D-3D point pair
j Index of random pose sample
t Index of AMIS iteration
N Number of 2D-3D point pairs in total
K Number of pose samples in total
T Number of AMIS iterations
K ′ Number of pose samples per AMIS iteration
nhead Number of heads in the deformable correspondence network
nhpts Number of points per head in the deformable correspondence network
LKL KL divergence loss for object pose
Ltgt The component of LKL concerning the reprojection errors at target pose
Lpred The component of LKL concerning the reprojection errors over predicted pose
Lreg Derivative regularization loss

Table 7. A summary of frequently used notations.

9

References
[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org. 1
[2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz

Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. Journal
of Machine Learning Research, 2018. 2

[3] Christopher M. Bishop. Mixture density networks, 1994. 4
[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 2, 5,
6

[5] Hansheng Chen, Yuyao Huang, Wei Tian, Zhong Gao, and
Lu Xiong. Monorun: Monocular 3d object detection by re-
construction and uncertainty propagation. In CVPR, 2021. 4,
5

[6] Jean-Marie Cornuet, Jean-Michel Marin, Antonietta Mira,
and Christian P. Robert. Adaptive multiple importance sam-
pling. Scandinavian Journal of Statistics, 39(4):798–812,
2012. 2

[7] Inderjit S. Dhillon and Suvrit Sra. Modeling data using di-
rectional distributions, 2003. 2

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 4

[9] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobo-
dan Ilic, Kurt Konolige, Nassir Navab, and Vincent Lepetit.
Multimodal templates for real-time detection of texture-less
objects in heavily cluttered scenes. In ICCV, 2011. 2

[10] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and
Kris M. Kitani. Repose: Fast 6d object pose refinement via
deep texture rendering. In ICCV, 2021. 5

[11] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o(n) solution to the pnp problem. Inter-
national Journal Of Computer Vision, 81:155–166, 2009. 2,
5

[12] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn:
Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In ICCV, 2019. 4, 5

[13] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose
estimation. In CVPR, 2019. 5

[14] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and
Andrew W. Fitzgibbon. Bundle adjustment: A modern syn-
thesis. In International Workshop on Vision Algorithms:
Theory and Practice, 2000. 1

[15] David E. Tyler. Statistical analysis for the angular central
gaussian distribution on the sphere. Biometrika, 74(3):579–
589, 1987. 3

[16] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
FCOS3D: Fully convolutional one-stage monocular 3d ob-
ject detection. In ICCV Workshops, 2021. 3, 4

[17] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 3

10

http://ceres-solver.org

	. Levenberg-Marquardt PnP Solver
	. Adaptive Huber Kernel
	. LM Step with Huber Kernel
	. Covariance Estimation
	. Initialization

	. Details on Monte Carlo Pose Sampling
	. Proposal Distribution for Position
	. Proposal Distribution for 1D Orientation
	. Proposal Distribution for 3D Orientation

	. Details on Derivative Regularization Loss
	. Details on the Deformable Correspondence Network
	. Network Architecture
	. Loss Functions for Object-Level Predictions
	. Auxiliary Loss Functions
	. Training Strategy

	. Additional Results of the Dense Correspondence Network
	. Convergence Behavior
	. Inference Time

	. Additional Experiments on the Deformable Correspondence Network
	. On the Auxiliary Reprojection Loss
	. On the Uncertainty of Object Pose
	. On the Network Redundancy and Potential for Future Improvement

	. Limitation
	. Additional Visualization
	. Notation

