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We provide a supplementary introduction to the pro-
posed method FILIT and additional experimental results
to examine the effectiveness of the FILIT. Firstly, we in-
troduce the limitations of FILIT (Sec. S1). Secondly, we
provide a detailed introduction of the architectures of the
generator and the discriminator (Sec. S2) and the training
setup (Sec. S3). Thirdly, we provide more qualitative and
quantitative results (Secs. S4.3 and S4.4 ). In particular,
we additionally compare FILIT with state-of-the-art label-
to-image translation models (SPADE [15], CC-FPSE [11],
CLADE [22] and OASIS [19]), which are trained with full
datasets without incremental learning (Tab. S3, Figs. S6 and
S7). Fourthly, we provide more ablation study results and
cross-domain generative results (Secs. S4.6 and S4.8). Fi-
nally, we analyze failure examples (Sec. S4.9).

S1. Limitations
Our method is based on several assumptions. 1) We as-

sume that base convolution filters and normalization layers
trained on a large-scale dataset can be modulated to achieve
novel tasks. 2) Convolution filters corresponding to differ-
ent semantic classes belong to the same affine space. 3) Se-
mantic classes with perceptually similar visual appearances
have modulation parameters close to each other.

Limitations of our proposed method are stated as fol-
lows. 1) Our method relies heavily on the accuracy of data
annotation; when the annotation is unclear or inaccurate,
our method cannot capture the differences between seman-
tic classes precisely. 2) Because we only learn a few param-
eters for a new task, when the task contains complex details,
FILIT may fail to capture the details accurately (Sec. S4.9).
3) When the novel semantic classes and the learned classes
are perceptually dissimilar, the proposed modulation trans-
fer strategy cannot help the convergence in the learning of
new classes (Sec. S4.8). 4) Our method has a limitation in
fairness. Our method can be used in human-related tasks,
such as fashion or face generation, as shown in Fig. S9.
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Human-related datasets may have data bias related to fair-
ness issues. Such bias can be captured by our model in the
training. Our model may reflect the bias by generating pop-
ular modes but ignoring underrepresented modes.

To the best of our knowledge, our method has no other
ethical/privacy/transparency impact. Specifically, the pro-
posed method helps to secure privacy and transparency. In
our design, user-related data is only used in the incremental
training stage. In this state, new components (modulation
parameters) are created to learn the data. These compo-
nents are separated from the base network, so they can be
accessed, rectified, erased, transported or frozen easily to
protect privacy, without affecting other components.

S2. Details of Architecture
S2.1. Details of Generator

Our semantically-adaptive generator is built on top of
CLADE [22]. The generator stacks ResNet blocks [3] with
normalization, convolution, and LeakyReLU. Fig. S1(a)
illustrates the global architecture of the generator, and
Fig. S1(b) shows the details of a ResNet block. The gen-
erator takes a random noise and a semantic label map as
inputs, and the label map is fed in each ResNet block to
produce class-specific modulation parameters for normal-
ization and convolution layers. We add an extra noise to the
input of each ResNet block. The scale of such noise is ad-
justed by a per-channel scaling factor that is learned during
training, similar to StyleGAN [6].

We further introduce the motivation of the modulation
design of FILIT and discuss the connections to related
methods. Main modulation techniques of filters include the
modulation along input channels [7], output channels [17]
and both [2, 28]. Existing techniques are based on typi-
cal convolution filters of size RCout×Cin×sw×sh . Here Cout

and Cin are the number of output and input channels, while
sw and sh are the kernel width and height. Label-to-image
translation requires to modulate convolution filter according
to pixel-wise classes, so the modulation gives an intermedi-
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Figure S1. The architecture of generator. (a) The global architecture of the generator. (b) A detailed view of a ResNet block.

Image

U-Net based discriminator

N classes indicating pixel-wise 
semantic prediction

An extra class 
indicating pixel-wise 
realness 

Figure S2. The architecture of discriminator. The discriminator is a U-Net giving (N +1)-class prediction. The first N predictions are the
classification of semantic classes. The extra one prediction is the realness of the input image.

ate spatial filter of size RCout×Cin×sw×sh×W×H . W and H
denote the width and height of the input feature map. Such
intermediate filter is costly. To reduce the cost, we adopt
depthwise separable convolution [4], and the modulation is
applied to the filters of depthwise convolution only. There-
fore, the intermediate filter size is only RCin×sw×sh×W×H ,
while the modulation is applied along input and output
channels simultaneously.

Recall that our modulation on a filter F is defined as

F̂ = γ′
conv ⊗ F − µ(F)

σ(F)
+ β′

conv

b̂ = b+ b′conv

(1)

Here µ(F) and σ(F) are the channel-wise mean and stan-
dard derivation of F , respectively. The filter is normalized
along the spatial footprint [2] to remove base style informa-
tion to facilitate learning unseen semantic classes. To equip
the filter with the target styles of pixels’ classes, our mod-
ulation applies a scale γ′

conv and a shift β′
conv to the base

filter [2, 28]. The scale and shift introduce more flexibil-
ities to the adapted filter compared with scaling the filter
only [28]. Modulation with scales only has limited flexibil-
ities for adaption [28]. Finally, the bias in the convolution
is also modulated spatially in our design.

To strengthen semantic information, we use normal-
ization layers modulated according to spatial semantic la-



bels. The normalization operation may wash away style
information, so modulation is necessary [15]. Moreover,
it is shown modulation in normalization benefits few-shot
learning [14] and class information transfer [20]. Contrar-
ily, StyleGAN2 [7] designs a normalized convolution filter
without accompanied normalization. However, the normal-
ized filter aims to restore the outputs back to the input’s
standard deviation. Using normalization and convolution
separately introduces more flexibilities in learning unseen
semantic classes. Notice that we use a pre-activation [3]
structure in which convolution is performed after normal-
ization, so the convolution bias will not be normalized. Ab-
lation study in the main manuscript shows modulated nor-
malization contributes to incremental learning (Tab. S5).

In our design, a block has 5 × Cin parameters to learn
for a new class. This is smaller than 2 × Cin × Cout in
AdaFM [28] and GANmemory [2] to reduce computational
budget, while it is larger than 2 × Cin in FiLM [17] (mod-
ulated filters) and cGANTransfer [20] (modulated normal-
ization) to introduce more flexibilities.

To explain proposed semantically-adaptive normaliza-
tion and convolution more clearly, we present a pseudo code
in Fig. S3.

S2.2. Details of Discriminator

We adopt the discriminator in OASIS [19]. The dis-
criminator can be seen as a semantic segmentation network,
which casts the discriminator task as a N + 1 classes seg-
mentation problem. The architecture of discriminator is
built upon classic U-Net [18], which is an encoder-decoder
network, and has been proven to be effective for semantic
segmentation (Fig. S2).

S3. Details of Training

S3.1. Loss function

The loss function to train FILIT contains three compo-
nents introduced as follows.

Adversarial Loss. Specifically, the adversarial losses
for generator and discriminator are given in Eq. 2. Here
x denotes the real image, H and W denote the height and
width of the real image; (z, y) is the pair of noise and label
map given to the generator G to synthesize an image. Given
a real or fake image, the discriminator D gives a per-pixel
(N + 1)-class prediction [19].

LD =− E(x,y)




N∑

n=1

H×W∑

h,w

yh,w,n logD(x)h,w,n




− E(z,y)



H×W∑

h,w

yh,w,n logD(G(z, y))h,w,n=N+1




LG =− E(x,y)




N∑

n=1

H×W∑

h,w

yh,w,n logD(G(z, y))h,w,n




(2)
Perceptual Loss. We involve perceptual loss Lvgg [5] to

pursue perceptual similarity between a generated image and
the ground-truth image. Given a target image, we use VGG-
19 [21] to extract feature maps to calculate the perceptual
loss.

Lvgg = E(z,y)

V∑

v=1

1

Mv
[∥ϕv(x)− ϕv(G(z, y))∥1] (3)

where V denotes the number of used ReLU layers in VGG-
19 [21], and ϕv denotes the v-th ReLU layer and Mv de-
notes the number of elements in ϕv .

Consistency Loss. This loss is based on the LabelMix
augmentation operation [19] (denoting as LM ). Specifi-
cally, given a semantic label map, it produces a binary label
bl to mix a pair (x, x̂) of real and fake images conditioned
on the same label map: LM (x, x̂, bl) = bl⊙x+(1−bl)⊙x̂.
After obtaining the mixed image, a consistency loss term
Lcon is added to further train the discriminator to be equiv-
ariant under the LabelMix operation.

Lcon = ∥Dlg(LM (x, x̂, bl))− LM (Dlg(x), Dlg(x̂), bl)∥2
(4)

where ∥·∥ is the L2 norm and Dlg are the logits attained
before the last softmax activation layer.

Full Objective. We train FILIT by solving the overall
loss function

argmin
G

max
D

Lfull ≡ LGAN + λvggLvgg + λconLcon (5)

S3.2. Training details

The optimizers, learning rates and loss functions in the
pre-training phase and the incremental learning phase are
the same. We use the ADAM optimizer [9] with β1 =
0, β2 = 0.999. The learning rates are set to 0.0001 for the
generator and 0.0004 for the discriminator, respectively. We
set the loss weight λvgg = 10 and λcon = 10. In the ResNet
blocks of generator, we use a synchronized version of batch
normalization [27] to get better performance. In addition,
we also add the positional encoding maps of semantic la-
bel maps as extra inputs [22]. It is defined as the relative



from torch.nn import functional as F
def basic block(f, y, gamma norm, beta norm, gamma conv, beta conv, bias conv,

base depthwise filter, base pointwise filter, base bias):
# f : the input feature map, B x Cin x W x H
# y : the semantic label map, B x N x W x H
# gamma norm : N x Cin
# beta norm : N x Cin
# gamma conv : N x Cin
# beta conv : N x Cin
# bias conv : N x Cin
# base depthwise filter : Cin x sw x sh
# base pointwise filter : Cout x Cin x 1 x 1
# base bias : Cin
# N is the number of semantic classes.

""" Guided Sampling for Normalization """
dense gamma norm = F.embedding(y, gamma norm) # B x Cin x W x H
dense beta norm = F.embedding(y, beta norm) # B x Cin x W x H

""" Modulation in Normalization """
hat f = dense gamma norm ∗ F.batch norm(f) + dense beta norm

""" Nonlinear """
hat f = F.leaky relu(hat f)

""" Guided Sampling for Convolution """
dense gamma conv = F.embedding(y, gamma conv) # B x Cin x W x H
dense beta conv = F.embedding(y, beta conv) # B x Cin x W x H
dense bias conv = F.embedding(y, bias conv) # B x Cin x W x H

""" Modulation in Convolution """
# Cin x sw x sh
n depthwise filter = (base depthwise filter−base depthwise filter.mean([1,2]))/(base depthwise filter.std([1,2]))
# B x Cin x W x H x sw x sh
m depthwise filter = einsum("BCWH,Cwh−>BCWHwh",dense gamma conv,n depthwise filter)+dense beta conv
# B x Cin x W x H x sw x sh
f unfolded = F.unfold(hat f, [sw, sh], padding=1).view(B, Cin, sw, sh, W, H)
# B x Cin x W x H
hat f2 = einsum("BCWHwh,BCwhWH−>BCWH",m depthwise filter,f unfolded)+dense bias conv

return F.conv(hat f2, base pointwise filter)

Figure S3. Pseudo code of FILIT’s basic block in a PyTorch [16] style.

distance from each pixel to its corresponding object center,
and it improves intra-class spatial adaptiveness. We resize
images to 256× 256 for training. In the pre-training phase,
the training batch size is 30, and we train 100 epochs for
ADE20K dataset, and 50 epochs for COCO-Stuff dataset.
In the incremental learning phase, the batch size is 10 and
the model is trained for 100 epochs.

S4. Experiment

S4.1. Dataset

We conduct experiments on two semantically-
annotated datasets: ADE20K [29] and COCO-Stuff
dataset [1]. We divide them into 21 sub-datasets
{D0,D1 · · · ,D20}, respectively. D0 is used for pre-
training and {D1,D2, · · · ,D20} for incremental learning.
Tab. S1 demonstrates the semantic class and the number of
training samples of each task in ADE20K and COCO-Stuff

dataset. Semantic classes learned in incremental learning
are those have the least number of training samples in the
original dataset.

S4.2. Baselines

We first compare FILIT with image generation models
in incremental learning setting as follows.

• LifelongGAN [26] introduces knowledge distillation
losses into BicycleGAN [30] to perform conditional
image generation in the incremental learning setting.
We reproduce LifelongGAN for our experiments.

• PiggybackGAN [24] factorizes filters trained on pre-
vious tasks to learn new tasks, and maintains a task-
specific filter bank to memorize learned tasks. We use
the code from [8] for our experiments.

• fCLADE is a weight-freezing baseline to investigate
whether simply freezing most weights of a pre-trained



label-to-image model is able to achieve incremental
learning. We use the CLADE [22] pre-trained on D0 as
the starting model, and freeze its parameters except for
the input channels for new classes when incrementally
learning on {D1, · · · ,DT }.

• FILIT-Oracle is a variant of FILIT trained with
{D0,D1, · · · ,DT } jointly without incremental learn-
ing. This model marks the performance upper bound
that FILIT can achieve in the incremental learning.

• FILIT-SFT (Sequential Fine-Tuning) is another variant
of FILIT. It is also pre-trained on the Task 0, and then it
is fine-tuned in a sequential manner. In the fine-tuning
process, the whole generator is used to learn new tasks,
and the decoder of discriminator is fixed [13].

Then we compare FILIT with state-of-the-art label-to-
image translation models as follows.

• SPADE [15] uses spatially-adaptive normalization
to avoid semantic information of label maps being
washed away in normalization layers.

• CC-FPSE [11] predicts convolutional kernels condi-
tioned on semantic label maps to effectively exploit the
semantic layout for the generator.

• CLADE [22] uses class-adaptive normalization
to propagate semantic information, which is a
lightweight variant of SPADE.

• OASIS [19] first designs the discriminator for label-to-
image translation as a semantic segmentation network,
which provides stronger supervision to the discrimina-
tor as well as to the generator. It also injects a 3D noise
tensor into the generator, which enables high-quality
multi-modal image synthesis.

These label-to-image translation models are not de-
signed for the incremental learning setting. Therefore, we
trained them with {D0,D1, · · · ,DT } jointly without the in-
cremental learning process. We denote them as SPADE-
Oracle, CC-FPSE-Oracle, CLADE-Oracle, and OASIS-
Oracle in following sections. They are trained on ADE20K
and COCO-Stuff datasets for 100 epochs, separately. They
also present the performance upper bound that FILIT can
achieve in the incremental learning.

S4.3. Qualitative Results

Figs. S4 and S5 present additional generated images of
FILIT, FILIT’s variants and compared conditional genera-
tive models based on incremental learning. As can be seen,
LifelongGAN, PiggybackGAN and FILIT-SFT fail to gen-
erate clear images. fCLADE effectively avoids forgetting,

but it hardly learns the features of new classes in incremen-
tal learning. FILIT generates images as visually-pleasing as
FILIT-Oracle.

Figs. S6 and S7 present generated images of FILIT and
compared label-to-image translation models on ADE20K
and COCO-Stuff. Because compared models have no in-
cremental training phase, we do not conduct recalling ex-
periments to examine the catastrophic forgetting. Results
show that FILIT generate images as visually-appearing as
compared full-trained models.

S4.4. Quantitative Results

Tab. S2 reports quantitative results of FILIT, compared
conditional generative models based on incremental learn-
ing, and FILIT’s variants. The results show that FILIT
achieves comparable performance with FILIT-Oracle and
outperforms other compared models.

Tab. S3 reports quantitative results of FILIT and com-
pared label-to-image translation models on ADE20K and
COCO-Stuff. The results on COCO-Stuff show that FILIT
achieves comparable performance with compared state-of-
the-art label-to-image models. The results of FID and
SceneFID on ADE20K show large differences across com-
pared models. This may attribute to the instability of FID
when the amount of testing data is small (1,098 testing im-
ages of 20 tasks in total).

S4.5. Human Evaluation Results

Results are in Tab. S4. For each comparison, we ran-
domly picked 500 questions from the ADE20K dataset, and
each question is answered by 10 anonymous workers. For
each question, we give the workers an input semantic label
and two shuffled images generated by FILIT and a com-
pared method. They pick the image with better visual qual-
ity and layout alignment. Our method achieves a compa-
rable performance with FILIT-Oracle and outperforms the
others. We have approvals from workers.

S4.6. Ablation Study

We conduct ablation studies on variants of our pro-
posed model on ADE20K dataset. Experimental results
(Tab. S5) show that semantically-adaptive convolution fil-
ters, semantically-adaptive normalization and modulation
transfer strategy all have positive influences on FID and
SceneFID. In addition, we investigate the influence of the
number of training samples of each task in the few-shot in-
cremental training. Results show that the number of training
samples of each task between 1-20 has little effect on the
model performance. Fig. S8 presents the qualitative results
of ablation study, and it shows that without adaptive normal-
ization or modulation transfer strategy, the generated ob-
jects with novel classes become blurring. Without adaptive



convolution filters, the generated novel classes have fewer
texture details.

In Tab. S5, the segmentation performance of compared
ablation models have minor differences. In our opinion,
the insensitivity of segmentation performance is due to that
those new semantic classes learned in the incremental learn-
ing only occupy a small part of area in the generated images.
The segmentation models we use, like UpperNet-101 [23]
for ADE20K, are trained on large-scale datasets. They are
able to perceive images globally. They can infer the regions
corresponding to the new classes from other regions of im-
ages.

S4.7. Model Expansion

FILIT adds class-specific modulation parameters to the
original model when learning a new task, and it belongs to
the expansion-based method. We compare the model ex-
pansion of FILIT with PiggybackGAN [24], which is also
an expansion-based method. As shown in Tab. S6, the
additional parameters for each subsequent class of FILIT
are only 0.06M. In addition, to exclude the influence of
initial model size on performance, we design FILIT-mini
with 6.70M parameters from start, less than Piggyback-
GAN’s (7.84M). FILIT-mini still outperforms Piggyback-
GAN (FID: 81.3 vs 253.9, SceneFID: 94.8 vs 153.3) in the
incremental learning on Task 1 to 20, so the improvement
is from model design instead of size. In summary, FILIT
requires little amount of expansion while achieving com-
pelling performance.

S4.8. Experiments on Cross-Domain Tasks

We use the model trained on all tasks of ADE20K to
continually learn cross-domain samples from DeepFashion
[12] and CelebAMask-HQ [10] dataset. Ten samples from
DeepFashion are picked to construct D21, which contains
nine novel semantic classes: “background”, “dress”, “neck-
wear”, “headwear”, “belt” , “footwear”, “hair”, “skin”, and
“face”. Ten samples from CelebAMask-HQ are picked
to construct D22, which contains sixteen classes: “skin”,
“left brow”, “right brow”, “left eye”, “right eye”, “left ear”,
“right ear”, “ear ring”, “nose”, “mouth”, “up lips”, “down
lip”, “neck”, “hair”, “cloth”, and “background”. Fig. S9
shows additional generated results of FILIT in the domain
of DeepFashion and CelebAMask-HQ. After only learn-
ing a few samples, FILIT can generate persons in different
poses and generate faces with vivid facial features.

S4.9. Failure Examples

Fig. S10 presents several failure cases of the proposed
method. These generated objects of classes learned in the
incremental learning lack fine-grained texture. There are
two reasons. Firstly, semantic classes learned in incremen-
tal learning in our experiments are those having the least

number of samples in the original dataset. These classes
are usually atypical, and their training samples are diverse.
We provide examples of training samples for four classes
in Fig. S10, and their appearances are diverse with com-
plex textures. Therefore, it is difficult to capture the statisti-
cal characteristics of these classes with only a few samples.
Secondly, the model only learns a few modulation parame-
ters for a novel class, and thus it fails to capture the target
distribution with a few iterations.



Dataset Task ID Semantic class NT

ADE20K

0

wall, building, sky, floor, tree, ceiling, road, bed, windowpane, grass, abinet, sidewalk person, earth, door,
table, mountain, plant, curtain, chair, car, water, painting, sofa, shelf, house, sea, mirror, rug, field, seat,
armchair, fence, desk, rock, wardrobe, lamp, bathtub, railing, cushion, base, box, column, signboard, sand,
chest of drawers, counter, sink, skyscraper, fireplace, refrigerator, grandstand, covered, path, stairs, case,
pool table, pillow, screen door, stairway, adiator, glass, clock, flag, screen, bulletin board, hood, sconce,
river, bridge, bookcase, blind, coffee table, book, hill, oilet, bench, countertop, palm, stove, vase, tray, fan,
kitchen island, swivel chair, boat, bar, towel, light, compute, bus, tower, handelier, awning, crt screen,
television receiver, truck, apparel, pole, land, bannister, ottoman, bottle, buffet, poster, van, traffic light,
washer, plaything, stool, basket, bag, minibike, oven, ball, food, plate,monitor, shower, ashcan,
step, trade name, microwave, pot, animal, bicycle, airplane, dishwasher, blanket sculpture, streetlight,

-

1 runway 72
2 arcade machine 54
3 hovel 50
4 booth(or cubicle or stall or kiosk) 56
5 dirt track 67
6 escalator (or moving staircase or moving stairway) 28
7 stage 96
8 ship 34
9 fountain 79
10 canopy 55
11 conveyer belt (or conveyor belt or conveyer or conveyor or transporter) 41
12 washer(or automatic washer or washing machine) 66
13 swimming pool ( or swimming bath or natatorium) 46
14 barrel (or cask) 33
15 waterfall (or falls) 67
16 tent (or collapsible shelter) 41
17 cradle 59
18 tank (storage tank) 46
19 lake 37
20 pier 71

COCO-Stuff

0

unlabeled, person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire, furniture-other,
street sign, stop sign, bench, bird, cat, dog, horse, sheep, cow, elephant, zebra, hydrant, zebra, wood, door-stuff,
giraffe, hat ,backpack, umbrella, shoe, eye glasses, handbag, tie, suitcase, frisbee, skis, wall-tile, fence,
snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket, wall-wood,
bottle, plate, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, floor-other,
carrot, pizza, cake, chair, couch, potted plant, bed, mirror, dining table, window, desk, toilet, door, floor-tile,
tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, sink, refrigerator, blender, book, floor-wood,
clock, vase, teddy bear, hair brush, banner, blanket, branch, bridge, building-other, bush, cabinet, flower, fog,
cage, cardboard, carpet, ceiling-other, cloth, clothes, clouds, counter, curtain, desk-stuff, dirt, water-other,
grass, gravel, ground-other, hill, house, leaves, light, metal, mirror-stuff, mountain, napkin, paper, fruit,
pavement, pillow, plant-other, plastic, platform, playingfield, railing, railroad, river, road, rock, roof,
rug, sand, sea, shelf, sky-other, skyscraper, snow, stairs, stone, structural-other, table, tent, window-blind,
textile-other, towel, tree, vegetable, wall-brick, wall-concrete, wall-other, wall-panel, wall-stone,window-other

-

1 parking meter 672
2 bear 868
3 donut 1350
4 toaster 134
5 hot dog 1040
6 scissors 833
7 hair drier 120
8 cupboard 882
9 floor-stone 1213
10 moss 197
11 floor-marble 964
12 ceiling-tile 276
13 mat 518
14 toothbrush 749
15 mud 566
16 salad 447
17 solid-other 708
18 net 1356
19 waterdrops 76
20 straw 1390

Table S1. The semantic class and the number of testing samples (denoting as NT in table) of each task in ADE20K and COCO-Stuff
dataset.
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Figure S4. Qualitative results on ADE20K dataset. The first two columns show the generative results on Task 0 after pre-training. The
central four columns show the incremental learning results on Task 5, 10, 15 and 20. The last two columns on the right display results of
recalling Task 0 after the incremental learning, and they are to examine catastrophic forgetting.
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Figure S5. Qualitative results on COCO-Stuff dataset. The first two columns show the generative results on Task 0 after pre-training. The
central four columns show the incremental learning results on Task 5, 10, 15 and 20. The last two columns on the right display results of
recalling Task 0 after the incremental learning, and they are to examine catastrophic forgetting.

Method ADE20K COCO-Stuff

mIoU↑ accu↑ FID↓ FmIoU↓ Faccu↓ FFID↓ SceneFID↓ mIoU↑ accu↑ FID ↓ FmIoU↓ Faccu↓ FFID↓ SceneFID↓
LifelongGAN 10.0 25.2 170.5 37.7% 32.6% >50% 112.3 2.2 4.8 160.0 >50% >50% >50% 57.3
PiggybackGAN 5.2 15.4 253.9 >50% >50% >50% 153.3 2.6 7.7 208.4 >50% >50% >50% 116.2
fCLADE 21.8 49.1 78.4 0% 0% 0% 87.0 14.9 34.4 48.2 0% 0% 0% 45.8
FILIT-Oracle 23.5 50.4 74.4 - - - 77.8 18.0 38.0 32.0 - - - 28.8
FILIT-SFT 16.8 40.7 170.2 35.6% 24.4% >50% 147.8 15.0 32.4 64.4 16.3% 13.5% >50% 37.6
FILIT 23.2 49.6 77.1 0% 0% 0% 80.7 18.0 37.9 32.7 0% 0% 0% 22.3

Table S2. Quantitative results on ADE20K and COCO-Stuff. ↑ means a higher value is better, and vice versa. The best and second best
performances are highlighted by using bold and underline, separately.
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Figure S6. Qualitative results on ADE20K dataset. The compared models SPADE-Oracle, CC-FPSE-Oracle, CLADE-Oracle and OASIS-
Oracle are trained with training samples of all tasks jointly without the incremental learning process. FILIT incrementally trains novel
classes. Results show that FILIT generates images as visually-appearing as compared models without forgetting already-learned classes.
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Figure S7. Qualitative results on COCO-Stuff dataset. The compared models SPADE-Oracle, CC-FPSE-Oracle, CLADE-Oracle and
OASIS-Oracle are trained with training samples of all tasks jointly without the incremental learning process. FILIT incrementally trains
novel classes. Results show that FILIT generates images as visually-appearing as compared models without forgetting already-learned
classes.

Method ADE20K COCO-Stuff

mIoU↑ accu↑ FID↓ SceneFID↓ mIoU↑ accu↑ FID ↓ SceneFID↓
SPADE-Oracle 23.5 52.8 59.0 60.0 18.4 41.5 23.0 17.7
CC-FPSE-Oracle 21.6 48.1 81.8 72.1 16.6 35.6 45.8 25.7
CLADE-Oracle 23.8 53.5 65.0 66.9 17.2 39.6 32.2 29.1
OASIS-Oracle 25.0 51.8 68.4 79.2 20.0 41.5 25.2 30.6
FILIT-Oracle 23.5 50.4 74.4 77.8 18.0 38.0 32.0 28.8
FILIT 23.2 49.6 77.1 80.7 18.0 37.9 32.7 22.3

Table S3. Quantitative results on ADE20K and COCO-Stuff. The compared models are SPADE-Oracle, CC-FPSE-Oracle, CLADE-Oracle,
OASIS-Oracle and FILIT-Oracle. They are trained with training samples of all tasks jointly without the incremental learning process. ↑
means a higher value is better, and vice versa. The best performances are highlighted.



Ours vs. Task 0 after Pre-Training Task 1-20 Task 0 after Incremental Learning

LifelongGAN 78.8% 81.8% 78.1%
PiggybackGAN 68.2% 81.4% 82.2%
FILIT-Oracle 45.7% 59.1% 47.7%
FILIT-SFT 50.0% 79.4% 80.0%
fCLADE - 85.8% -

Table S4. User study Results.

Method mIoU↑ accu↑ FID↓ SceneFID↓

FILIT-20 23.2 49.6 77.1 80.7

w/o adaptive convolution filters 23.0 48.8 81.6 84.0
w/o adaptive normalization 22.5 48.5 83.7 88.4
w/o modulation transfer 23.0 49.4 84.1 87.2

FILIT-15 23.2 49.5 77.4 80.1
FILIT-10 23.2 49.4 77.0 79.9
FILIT-5 23.0 49.1 77.9 82.2
FILIT-1 23.0 49.1 79.6 82.0

Table S5. Results in the ablation study for 20-task incremental learning on ADE20K dataset.
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Task 15
waterfall

Figure S8. Qualitative results of ablation study.



Method Task 0 Task 1 Task 20 Additional↓

PiggybackGAN † 7.84M 12.22M 95.44M 4.38M
PiggybackGAN ◦ 13.16M 13.64M 22.32M 0.48M
FILIT 18.99M 19.05M 20.15M 0.06M
FILIT-mini 6.70M 6.73M 7.28M 0.03M

Table S6. The numbers of additional parameters when learning a new semantic class of ADE20K. † means the numbers of Task 0 and Task
1 are from Zhai et al. [25] and the number of Task 20 is calculated accordingly. ◦ means the numbers are measured in the implementation
of [8].

Recalling Task 0

Ten training 
samples of Task 21

Test labels and generated images of Task 21

Test labels and generated images of Task 22

Ten training 
samples of Task 22

Recalling Task 0

Recalling Task 21

Figure S9. Incremental learning results from DeepFashion and CelebAMask-HQ dataset in a ten-shot setting. After training on ten samples
from DeepFashion, we recall Task 0 from ADE20K dataset. After training on another ten samples from CelebAMask-HQ, we recall Task
0 and Task 21 again. Both recalling experiments show FILIT does not forget learned tasks.

Test labels and generated imagesExamples of training labels 
and images

Task “parking meter” 
from COCO-Stuff

Task “arcade machine” 
from ADE20K

Task “conveyer belt” 
from ADE20K

Task “hair drier” 
from COCO-Stuff

Figure S10. Failure examples from ADE20K and COCO-Stuff.
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