Focal Sparse Convolutional Networks for 3D Object Detection
Supplementary Material

A. More Implementation Details

Our implementation is based on the open-sourced Open-
PCDet [2, 8], and the released code of CenterPoint [12].

A.1. Voxelization

KITTI. The 3D object detectors in this work convert point
clouds into voxels as input data. On the KITTI [4] dataset,
the range of point clouds is clipped into [0, 70.4m] for X
axis, [-40m,40m] for Y axis, and [-3, 1]m for Z axis. The
voxelization size for input is (0.05m, 0.05m, 0.1m).

nuScenes. On the nuScenes [1], the detection range is set
to [-54m, 54m)] for both X and Y axes, and [-5m, 3m] for the
Z axis. The voxel size is set as (0.075m, 0.075m, 0.2m).

A.2. Data Augmentations

KITTI. On the KITTI [4] dataset, data transformation
and augmentations include random flipping, global scaling,
global rotation, and ground-truth (GT) sampling [11]. The
random flipping is conducted along the X axis. The global
scaling factor is sampled from 0.95 to 1.05. The global ro-
tation is conducted around the Z axis. The rotation angle
is sampled from -45° and 45°. The ground-truth sampling
is to copy-paste some new objects from other scenes to the
current training data, which enriches objects in the environ-
ments. For the multi-modal setting, we do not transform
images with the corresponding operations, except ground-
truth sampling. We copy-paste the corresponding image
crops from other scenes onto the current training images.

nuScenes. On the nuScenes [ | ] dataset, data augmentations
includes random flipping, global scaling, global rotation,
GT sampling [ 1], and an additional translation. The ran-
dom flipping is conducted along both X and Y axes. The
rotation angle is also randomly sampled in [-45°, 45°]. The
global scaling factor is sampled in [0.9, 1.1]. The trans-
lation noise is conducted on all three axes, X, Y, and Z,
with a factor independently sampled from O to 0.5. We also
conduct the corresponding point-image GT sampling on the
nuScenes. GT sampling is disabled in the last 4 epochs [10].

Table S - 1. Comparisons to Voxel R-CNN in R40 on KITTI val.

APggy AP3p

Method Easy Mod. Hard | Easy Mod. Hard
V. [2] 95.52 91.25 8899 | 9238 8529 82.86
Ours 9545 91.51 91.21 | 9286 85.85 85.29

Table S - 2. Objective loss weight in AP3p (R40) on KITTI val.

. Car Ped. Cyc.

Method | Weight | g0 Mod. Hard | Mod. | Mod.
Baseline |~ | 92.10 8436 8248 | 54.49 | 70.38
0.1 | 9159 84.63 8242 | 60.62 | 71.33

Focals 05 | 9210 85.16 83.12 | 63.74 | 69.56
Conv 1.0 | 9232 85.19 82.62 | 61.61 | 7276
20 | 9173 84.61 82.38 | 54.09 | 71.34

Table S - 3. Improvements upon CenterPoint on Waymo %

Method AP LEVEL 1 AP LEVEL 2
¢ Veh. Ped. Cyc. | Veh. Ped. Cyc.
Baseline 709 715 69.1 | 62.8 635 66.5

Focals Conv | 72.2 72.6 71.1 | 64.1 64.6 685

A.3. Training Settings

KITTI. For model training on the KITTI dataset, i.e., PV-
RCNN [8] and Voxel R-CNN [2], we train the network for
80 epochs with the batch size 16. We adopt the Adam [6]
optimizer. The learning rate is set as 0.01 and decreases in
the cosine annealing strategy. The weight decay is set as
0.01. The momentum is set as 0.9. The gradient norms of
training parameters are clipped by 10.

nuScenes. For models trained on the nuScenes datasets,
i.e., CenterPoint [12], we also train the network for 20
epochs with batch size 32. They are also trained with the
Adam [6] optimizer. The learning rate is initialized as le-3
and decreases in the cosine annealing strategy to le-4. The
weight decay is set as 0.01. The gradient norms of training
parameters are clipped by 35.
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Figure S - 1. The illustration of the VoxelNet [13] backbone networks of PV-RCNN [8], Voxel R-CNN [2], and CenterPoint [12]. {co, c1,

c2, €3, ca} represent the output channels of the Stem, Stage 1, 2, 3, and 4. {n1, na, n3, na} means the numbers of repeated submanifold
blocks in these stages. In our approach, for the LIDAR-only setting, focal sparse convolutions (Focals Conv) are used in the last layer of
Stage 1, 2, and 3. For the multi-modal setting, the focal sparse convolution with fusion (Focals Conv - F) is used in the last layer of Stage 1.

Table S - 4. Improvements over CenterPoint on the nuScenes val split.

| Method | AP NDS | Car  Truck Bus Trailer C.V. Ped Mot Byc TC. Bar |
CenterPoint [12] | 61.1 683 | 86.5 604 725 404 198 860 61.1 452 70.8 689
Focals Conv 623 69.0 | 865 612 735 403 213 865 633 480 720 70.6
Focals Conv-F | 67.1 715 | 87.7 629 724 42.6 281 87.8 744 655 789 70.1
ﬁ%ﬁ\x ﬁ\ﬁgs; Point [12] detector, the backbone network is larger. The

Precision
o o
> S

i
=

o
)

o

04 06 08 1
Recall

3D object detection

0.8 10 0.2

o

02 04
Recall

06

Bird’s eye view

Figure S - 2. PR curves of Focals Conv - F on KITTI fest.

B. Backbone Networks

We illustrate the structure of the backbone networks in
Fig. S - 1. In this illustration, Reg block and Subm block
mean the regular sparse convolutional block and the sub-
manifold sparse convolutional block, respectively. The
backbone networks are based on VoxelNet [13]. It contains
a stem layer and 4 stages. In the last three stages, Stage
1, 2, and 3, there a regular sparse convolutional block with
stride as 2 for down-sampling. There are some detailed dif-
ferences among different frameworks, as the following.

B.1. Architecture settings

PV-RCNN and Voxel R-CNN. In the backbones of PV-
RCNN [8] and Voxel R-CNN [2], the channels for the stem
and stages, {co, c1, ¢2, c3, ¢4}, are {16, 16, 32, 64, 64}.
The numbers of Subm blocks in these stages, {n1, na, ns,
ng},are {1,2,2,2}. A Reg or Subm block is a conv-bn-relu
layer, which includes a regular or submanifold convolution,
a batch normalization layer [5], and a ReL.U activation.

CenterPoint. In the backbone network of the Center-

channels for the stem and stages, {co, ¢1, ¢2, ¢3, ¢4}, equal
to {16, 16, 32, 64, 128}. The numbers of repeated Subm
blocks in these stages, {ni, ng, ns, ng}, are {2, 2, 2,
2}. Compared to that in the PV-RCNN [8] and Voxel R-
CNN [2] detectors, the Subm block is more complicated in
this backbone network. Except the stem, it contains two
sequential conv-bn-relu layers, with a residual connection.

B.2. Focal Sparse Convolution Usage

In our approach, the above architecture-level settings are
directly inherited from the original PV-RCNN [&], Voxel
R-CNN [2], and CenterPoint [3] frameworks, without any
adjustment, for a fair comparison. In the LIDAR-only task,
we apply the Focals Conv in the last layer of Stage 1, 2, and
3. In the multi-modal task, we apply the Focals Conv - F
only at the last layer of Stage 1. This relieves the efficiency
and memory issues caused by the RGB feature extraction.
Note that, in the CenterPoint [ 1 2] detectors, it is also used in
the last layer, not the total block. In other words, although
there are two conv-bn-relu layers in each Subm block in
CenterPoint [12], we only apply it as the last layer. For
simplification, we do not double it as a block.

C. Additional Experiments
C.1. Results on Bird’s Eye View on KITTI

We report the accuracy for 3D object detection and
Bird’s Eye View (BEV) of Focals Conv - F upon Voxel R-
CNN [2] on the KITTI [4] dataset in Tab. S - 1. The results
are calculated by recall 40 positions with the ToU threshold
of 0.7. It performs better than the strong Voxel R-CNN [2]
baseline on both APggy and AP;p in moderate and hard
cases. We also provide the Prevision-Recall (PR) curves of
Focals Conv - F on KITTI test split in Fig. S - 2.



Table S - 5. Ablations on ground-truth sampling on nuScenes i. GT Sampl. - Ground-truth Sampling. Trans. - Transformations.

Fusion | GT sampl. Trans. | mAP | Car Truck Bus Trail. C.V. Ped Mot Byc T.C. Bar

X v X 393 1708 31.0 49.0 203 35 737 288 134 493 50.6

v 433 | 70.8 325 479 21.0 6.7 726 449 31.8 584 49.1

X X % 546 | 804 519 60.6 315 142 814 574 454 63.1 60.7

v 59.0 | 83.2 561 615 366 19.7 843 59.1 494 738 663
Table S - 6. Ablations on voxel size upon Focals Conv - F on the nuScenes val split.

‘ Voxel size (m) ‘ mAP NDS ‘ Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar ‘
(0.05, 0.05,0.2) 65.6 702 | 89 616 70.1 35.9 250 883 740 661 794 70.1
(0.075,0.075,0.2) | 671 715 | 87.7 629 724 42.6 28.1 87.8 744 655 789 70.1
(0.1,0.1,0.2) 665 714 | 875 621 718 44.6 279 869 743 636 774 69.0
(0.125,0.125,0.2) | 66.6 709 | 87.0 61.1 74.0 44.1 30.2 856 751 638 751 69.6
(0.15,0.15,0.2) 653 702 | 869 609 728 45.1 30.0 833 704 635 727 679

C.2. Objective Loss Weight

The training of the focal sparse convolutional networks
involves the objective loss function. We implement it as a
focal loss [7] as in Eq (1).

1
Lovs = T > —(1—pi)log(py). (1

ieN

where ¢ € N enumerates all sparse features in the current
feature space. Following the original focal loss [7], we di-
rectly set v = 2 and it works well. For notational conve-
nience, we define p; as follow

Di,
1—pi,

where p; € [0, 1] is the estimated probability for the class
with label y; = 1. It is the estimation that whether the
feature ¢ contributes any foreground objects.

We analyze the loss weight for this objective loss in
Tab. S - 2. This ablation study is conducted upon the PV-
RCNN [8] detector on the KITTI [4] datasets. The results
on AP;p with 40 recall positions are reported as the met-
ric. We change the loss weight values from {0.1, 0.5, 1.0,
2.0}. It shows that too large or too small loss weight values
degrade the results. Loss weights 0.5 and 1.0 present com-
petitive performance. We remain the 1.0 loss weight as a
default setting for simplification.

pi = 2

otherwise,

C.3. Improvements on the Waymo Open Dataset.

To show our generalization capacity, we conduct further
experiments on Waymo dataset. We use % training data,
following the default setting in the OpenPCdet codebase .

Uhttps://github.com/open-mmlab/OpenPCDet

As shown in Tab. S - 3, Focals Conv also brings non-trivial
improvements on the Waymo [9] dataset.

C.4. Improvements on the nuScenes val split.

Tab. S - 4 presents the improvements over Center-
Point [12] on the nuScenes val split. The CenterPoint base-
line in Tab. S - 4 is implemented in the same settings to
Focals Conv and Focals Conv - F. It shows that both Fo-
cals Conv and Focals Conv - F bring non-trivial improve-
ments. Notably, Focals Conv - F improves the plain Center-
Point [12] by 5.9% mAP on the nuScenes val split.

C.5. Accuracy loss on some categories after fusion.

A surprising case is that the multi-modal fusion make
the performance stay the same or worse on some popular
categories, e.g., Car, Ped, Bar (from Focals Conv to Focals
Conv - F in Tab. 11). The improvements over the baseline
are consistent on all categories. To analyze this special case,
we conduct ablations on augmentations on CenterPoint and
the nuScenes i training set. We find ground-truth sam-
pling (GT Sampl.) is the keypoint. As in Tab. A - 5, when
GT Sampl. is used, the performance on some popular cat-
egories (e.g., Car, Bus, Ped, Bar) stays the same or worse.
In contrast, when we disable GT Sampl. and apply all other
transformations (flip, rotation, re-scaling, and translation),
all categories are benefited from the fusion. We suppose
that this is from the image-level copy-paste in GT Sampl.
When other objects are pasted onto images, popular objects
inevitably have more chance to be covered by the pasted,
which degrades the performance on these categories.

C.6. Ablations on Voxel Size.

We ablate the effects of different voxel sizes upon Focals
Conv - F on the nuScenes val split in Tab. S - 6. We change



Figure S - 3. The illustration of visual comparisons between the plain and the focal sparse convolutional backbone networks.

the voxel sizes in X and Y axes from 0.05m to 0.15m, with
the interval 0.025m. The overall mAP achieves the best per-
formance at the voxel size (0.075, 0.075, 0.2)m. However,
the proper voxel sizes vary across different classes. This
phenomenon deserves further analysis or a dynamic mech-
anism design in the future.

D. Visualizations

We provide additional visual comparisons between the
plain network and the focal sparse convolutional networks
in Fig. S - 3. It shares the same settings to the Fig. 2 in the
paper. These visualizations are based on the PV-RCNN [8]
detectors and on the KITTI [4] dataset. In each visualiza-
tion group, the top figure is the distribution of input voxels.
The middle and the bottom figures are from the plain and
the focal sparse convolutional networks, respectively. We
project the coordinate centers of the output voxel features
from the backbone networks onto the 2D image plane. The
projection is based on the calibration matrices of KITTI [4].
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