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1. Dataset split details

Office [7]. Following previous work [2], in the PDA set-
ting, we select 10 categories (“backpack”, “bike”, “calcula-
tor”, “headphones”, “keyboard”, “laptop computer”, “mon-
itor”, “mouse”, “mug” and “projector”) as the common cat-
egories between the two domains, and the remaining 21
categories are used as source private categories. In the
ODA setting, the same 10 categories are used as the com-
mon categories. Then we select other 11 categories (“tape
dispenser”, “ring binder”, “stapler”, “scissors”, “punch-
ers”, “speaker”, “pen”, “trash can”, “phone”, “ruler” and
“printer”) as the target private categories. This setting is the
same as [10]. In the OPDA setting, similar to [1], the same
10 categories are used as the common categories, and then,
in alphabetical order, the next 10 categories are used as the
source private categories, and the remaining 11 categories
are used as the target private categories.

OfficeHome [11]. Following previous work [1], we use
the same separation of categories in three DA settings. In
the PDA setting, in alphabetical order, we select the first 25
categories as the common categories and use the remaining
40 categories as the source private categories. In the ODA
setting, we select the first 25 categories as the common cat-
egories and use the rest 40 categories as the target private
categories. In the OPDA setting, we select the first 10 cat-
egories as the common categories, the next 5 categories as
the source private categories, and the remaining 50 cate-
gories as the target private categories.

VisDA [6]. We also use the same class split on VisDA
as in previous work [1]. In the PDA setting, in alphabet-
ical order, we select the first 6 categories as the common
categories and use the remaining 6 categories as the source
private categories. In the ODA setting, in alphabetical order,
we use the first 6 categories as the common categories and
the remaining 6 categories as the target private categories.
In the OPDA setting, in alphabetical order, we select the
first 6 categories as the common categories, the next 3 cate-
gories as the source private categories, and the remaining 3

*This work is completed in Huawei Technologies.
†Corresponding Author.

categories as the target private categories.
ImageCLEF [4] & ExDark [3]. There are 8 common

categories between these two datasets and 4 private cate-
gories for each dataset. The 8 common categories are “Bi-
cycle”, “Boat”, “Bottle”, “Bus”, “Car”, “Dog”, “Motor-
bike” and “People”, respectively. The 4 private categories
of ImageCLEF are “Airplane”, “Bird”, “Horse” and “Mon-
itor”, respectively, while the 4 private categories of ExDark
are “Cat”, “Chair”, “Cup” and “Table”, respectively.

2. Implementation details
Network architecture. We denote fc − k as a fully-

connected layer with k-dimensional output. drop repre-
sents the dropout layer and GRL refers to the gradient
reverse layer. relu, sigmoid and softmax denote three
kinds of activation functions. In our experiments, we ap-
ply ResNet50 as feature extractor F to obtain embedding
feature z. The domain discriminator D inputs the feature z
and outputs the domain predictions, i.e., z → fc − 256 →
GRL → fc − 1024 → relu → drop → fc − 1024 →
relu → drop → fc− 1 → sigmoid. The universal classi-
fier G inputs the feature z and generates label predictions in
Cs + 1 categories, i.e., z → fc − 256 → fc − Cs + 1 →
softmax. Note that the fc−256 in D and G shares param-
eters.

Update strategy of the hybrid memory bank Z . The
bank Z contains both updated source and target features
from the current mini-batch and the older features absent
in the mini-batch. We update Z so that it simply stores fea-
tures and provides global information, without utilizing the
exponential moving average of features in previous epochs.

Training strategy. To handle the distribution shift in all
datasets progressively, we set the initial 500 iterations as
the warm-up stage where only the Lsup and Lrw

D losses are
applied on the source and target samples. After that, we add
the Lrw

Contra and Lent losses into training.

3. Supplemental results
CDA setting. Due to limited space in the text, we put

the tested performance of each method in the CDA set-
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Table 1. Accuracy comparison in the CDA setting. Some results for previous methods are cited from DANCE [8] and DCC [1].
Office (31/0/0) OfficeHome (65/0/0) VisDA (12/0/0)

Methods Type A2W A2D D2W W2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
CDAN C 93.1 89.8 98.2 100.0 70.1 68.0 86.6 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8 70.0
MDD C 94.5 93.5 98.4 100.0 74.6 72.2 88.9 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 74.6
SRDC C 95.7 95.8 99.2 100.0 76.7 77.1 90.8 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3 81.9
UAN U 86.5 97.0 100.0 84.5 69.6 68.7 84.4 45.0 63.6 71.2 51.4 58.2 63.2 52.6 40.9 71.0 63.3 48.2 75.4 58.7 66.4
CMU U 79.6 78.3 98.1 97.6 62.3 63.4 79.9 42.8 65.6 74.3 58.1 63.1 67.4 54.2 41.2 73.8 66.9 48.0 78.7 61.2 56.9

DANCE U 88.6 89.4 97.5 100.0 69.5 68.2 85.5 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1 70.2
DCC U 89.1 87.2 96.8 100.0 74.4 76.8 87.4 35.4 61.4 75.2 45.7 59.1 62.7 43.9 30.9 70.2 57.8 41.0 77.9 55.1 69.3

OVANet U 67.3 72.5 94.8 99.6 43.4 44.9 70.4 34.5 55.8 67.1 40.9 52.8 56.9 35.4 26.2 61.8 53.8 35.4 70.8 49.3 38.5
GATE U 90.5 91.3 98.7 100.0 73.4 75.9 88.3 54.6 76.9 79.8 66.1 73.5 74.2 65.3 54.8 80.6 73.9 59.5 83.7 70.2 74.8

ting here. The results in Table 1 show that GATE out-
performs other state-of-the-art UniDA methods on three
datasets. Even compared to those methods specialized in
CDA setting, GATE achieves comparable performance to
some of them, such as only inferior to SRDC on Office,
OfficeHome and VisDA datasets. But such methods cus-
tomized for the CDA setting cannot adapt to the situations
where “unknown” samples exist, thereby limiting their ap-
plication in real-world scenarios.

OPDA setting on large-scale DomainNet dataset. Do-
mainNet [5] is the largest domain adaptation dataset so far,
with about 600K images covering 345 categories. Simi-
lar to DCC [1] and OVANet [9], we perform the OPDA
experiment on three sub-domains in it, i.e., Painting (P),
Real (R) and Sketch (S). From the results in Table 2, GATE
yields consistent improvement over previous UniDA meth-
ods, verifying its effectiveness on large-scale DA dataset.

Table 2. H-score comparison on DomainNet dataset under the
OPDA setting. Some results for previous methods are cited from
DCC [1] and OVANet [9].

DomainNet (150/50/145)
Methods Type P2R R2P P2S S2P R2S S2R Avg

UAN U 41.9 43.6 39.1 39.0 38.7 43.7 41.0
CMU U 50.8 52.2 45.1 44.8 45.6 51.0 48.3

DANCE U 55.7 51.1 47.0 47.9 46.4 55.7 50.6
DCC U 56.9 50.3 43.7 44.9 43.3 56.2 49.2

OVANet U 56.1 51.9 47.9 47.7 45.1 56.4 50.9
GATE U 57.4 52.8 48.7 49.5 47.6 56.3 52.1

Number of source private categories. We compare the
behavior of GATE with DANCE and DCC under the differ-
ent number of source private categories in the PDA setting.
In this analysis, we use “R2P” in OfficeHome to conduct ex-
periments, where there are 25 common categories between
two domains. We vary the category number present only
in the source domain from 10 to 40. The accuracy result is
shown in Figure 1a. With the appearance of more unshared
private categories in the source domain, the performance of
the three methods degrades. However, GATE consistently
outperforms DANCE and DCC, indicating that it is robust
to the change of source private category number.

Number of target private categories. We also analyze
the behavior of GATE under the different “unknown” cat-
egories number. Here we perform the ODA experiment on
the “A2R” task in OfficeHome, which has 25 shared cate-
gories. We increase the number of “unknown” categories
only in the target domain from 10 to 40. Figure 1b shows
the H-score comparison among three methods. As we add

more target private categories, the H-score of all methods
decreases. However, GATE consistently performs better
than DCC and OVANet, validating its stability with respect
to the “unknown” categories number.

Hyperparameter sensitivity of temperature τ . We
also perform control experiments for temperature parame-
ter τ in contrastive learning. We use the OfficeHome dataset
under the OPDA setting to conduct this analysis. For τ in
Figure 1c, within a wide range in [0.01, 0.1], the H-score
changes no more than 1%, showing that GATE is robust to
the selection of τ .
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Figure 1. Various case studies, including source and target private
categories number, and temperature τ .

References
[1] Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and

Yi Yang. Domain consensus clustering for universal do-
main adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9757–
9766, 2021. 1, 2

[2] Jian Liang, Yunbo Wang, Dapeng Hu, Ran He, and Jiashi
Feng. A balanced and uncertainty-aware approach for partial
domain adaptation. In Computer Vision–ECCV 2020: 16th
European Conference, pages 123–140, 2020. 1

[3] Yuen Peng Loh and Chee Seng. Chan. Getting to know low-
light images with the exclusively dark dataset. Computer
Vision and Image Understanding, 178:30–42, 2019. 1

[4] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.
Jordan. Deep transfer learning with joint adaptation net-
works. In International conference on machine learning,
pages 2208–2217, 2017. 1

[5] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406–1415, 2019. 2

[6] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv:1710.06924,
2017. 1

[7] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Adapting visual category models to new domains. In Euro-



pean conference on computer vision, pages 213–226, 2010.
1

[8] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate
Saenko. Universal domain adaptation through self supervi-
sion. Advances in Neural Information Processing Systems,
33, 2020. 2

[9] Kuniaki Saito and Kate Saenko. Ovanet: One-vs-all net-
work for universal domain adaptation. Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9000–9009, 2021. 2

[10] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and
Tatsuya Harada. Open set domain adaptation by backpropa-
gation. In Proceedings of the European Conference on Com-
puter Vision, pages 153–168, 2018. 1

[11] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 1


	. Dataset split details
	. Implementation details
	. Supplemental results

