A. Consistent Class Distribution Assumption

LabelMatch is based on the assumption that consistent class distribution exists between the labeled and unlabeled data since they are drawn from the same data distribution. To further verify this hypothesis, we present the comparisons between the labeled and unlabeled data in COCO-standard and VOC using the ground-truth labels. As shown in Fig. 1, the foreground-foreground class distribution and the foreground-background ratio of the unlabeled data are close to those of the labeled data in these SSOD settings.

B. More Results on COCO-standard

In this section, we present more experimental results on COCO-standard using the ablation study setting (see the fifth column in Tab. 9). Firstly, we carry out more analysis about ACT in Appendix B.1. Then, we study the effect of hyper-parameter in RPLM in Appendix B.2 and more analysis about proposal self-assignment in Appendix B.3. Finally, more qualitative results are exhibited in Appendix B.4.

B.1. Analysis of ACT

In this part, we present more analysis about the proposed ACT from flexibility and implementation.

Flexibility. To further demonstrate the flexibility of our method, we extend STAC [13] with the proposed ACT, denoted as STAC* for short. The original STAC first uses a pretrained model to generate pseudo labels and then uses a threshold of 0.9 to filter out low-quality pseudo labels, which are finally fed back into the network with strong data augmentation for model fine-tuning. Alternatively, STAC* replaces the fixed threshold with the proposed ACT for pseudo labeling and updates the thresholds every epoch. Since there is no mean teacher in STAC, the label assignment strategy of STAC* simply follows the ignore assignment, where uncertain pseudo labels are set as ignore labels.

Figure 1. Comparisons on class distribution between the labeled and unlabeled data. The blue and orange lines denote the foreground-foreground class distribution in the labeled and unlabeled data, respectively. “boxes/img” in the legend represents the foreground-background ratio.

Figure 2. Performance comparisons between STAC and STAC* on COCO-standard with 1% labeled data.

As shown in Fig. 2, there is an apparent performance gain after equipping STAC with ACT, demonstrating the universality of the proposed ACT.

Online vs. Offline. As discussed in the paper, ACT are updated to the evolved teacher during the training phase, avoiding a negative bias caused by the outdated predictions. There are two patterns to update ACT, one of which is introduced in the paper, leveraging a subset of unlabeled data to update ACT every K iterations, termed as offline version. Here, we describe another pattern, named as online version,
which maintains a scores queue, as shown in Fig. 3a. The teacher’s prediction is pushed into the scores queue for refreshing the ACT in each training iteration, which can be seen as a special case of the offline version with \(K = 1 \). Both versions of ACT can get satisfactory performance, as shown in Fig. 3b and Tab. 1. We use the offline version in all the experiments and will release the online version as well.

Thresholds evolve alone training. We select three head classes and three tail classes on offline version for analysis. As shown in Fig. 4, the thresholds (Eq.6 in the paper to filter reliable pseudo labels) increase in both head and tail classes during optimization. Specifically, the thresholds for tail classes are more fluctuated than those for head classes due to the scarce samples. Also, the quality of reliable pseudo labels get increased as training goes on.

B.2. Analysis of RPLM Hyper-Parameter

There are two hyper-parameters \((T_{\text{score}}, T_{\text{iou}})\) in the component of reliable pseudo label mining (RPLM). Here we use COCO-standard with 10% labeled data as the experimental setting. As shown in Tab. 2, the best performance appears when \((T_{\text{score}}, T_{\text{iou}}) = (0.8, 0.8)\). Therefore, we use \((T_{\text{score}}, T_{\text{iou}}) = (0.8, 0.8)\) by default in all experiments throughout the paper. It is also worth mentioning that our method is not sensitive to these hyper-parameters.

B.3. Analysis of proposal self-assignment

To further analyze the quality of the teacher’s RoI head predictions on the student’s proposals (proposals self-
Figure 6. Qualitative comparisons between the single confidence threshold and the proposed LabelMatch. Red rectangles highlight the false negatives, and yellow rectangles highlight the false positives. The score threshold for visualization is 0.6.

Table 3. Four different domain shifts in DA-OD, which are constructed by five different datasets, including Cityscapes [2], Cityscapes-foggy [11], KITTI [11], Sim10k [5] and BDD100K [5].

Table 4. Results of adaptation from normal to foggy weathers. “Source only” refers to the model trained by labeled source data.

Table 5. Results of adaptation from small to large scale datasets. † is an ideal setting that uses the ground-truth labels of the unlabeled data for class distribution estimation.

assignment vs. IoU-based label assignment), we use the ground truth for quantitative measurement. For each proposal, we calculate the cross-entropy between the corresponding prediction and the nearest ground truth (set as background if IoU<0.5). As shown in Fig. 5, the predictions by proposal self-assignment show better quality than IoU-based one.

B.4. Qualitative Results

We perform the qualitative comparisons between the proposed method and the mean teacher frameworks with a fixed and single confidence threshold (varying from 0.7 to 0.9). As shown in Fig. 6, there are many false positives with a low confidence threshold (yellow rectangles in the second column), while many false negatives appear when using a high confidence threshold (red rectangles in the fourth column). Although the manual search threshold (0.8) via trial-and-error can achieve satisfactory results, our method shows even better qualitative results.

C. Domain Adaptive Object Detection

LabelMatch is based on the consistent class distribution assumption between the labeled and unlabeled data. To ex-
Figure 7. Performance (AP$_{50:95}$) comparisons among different state-of-the-art SSOD methods with exactly the same training settings.

<table>
<thead>
<tr>
<th>Method</th>
<th>Loss</th>
<th>Threshold</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAC [13]</td>
<td>Cross-Entropy</td>
<td>0.9</td>
<td>16.1</td>
<td>24.0</td>
<td>28.1</td>
</tr>
<tr>
<td>Unbiased Teacher [8]</td>
<td>Focal-Loss</td>
<td>0.7</td>
<td>22.0</td>
<td>28.6</td>
<td>32.1</td>
</tr>
<tr>
<td>Soft Teacher [17]</td>
<td>Cross-Entropy</td>
<td>0.9</td>
<td>22.1</td>
<td>29.0</td>
<td>32.7</td>
</tr>
<tr>
<td>LabelMatch (Ours)</td>
<td>Cross-Entropy ACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Benchmark results on COCO-standard: our re-implementation with exactly the same training details and data augmentation strategies. * denotes the re-implementation without box-jitter trick. We only run 1-fold using the ablation training setting due to the limitation of computation resources.

Results. To examine the prior dependence on the consistent class distribution assumption, we evaluate LabelMatch in two class distribution estimation manners: 1) The first one is the same as described in the main body of the paper, which estimates the class distribution of the unlabeled target data by the annotations of the labeled source data; 2) The second one is an ideal setting, which determines the class distribution of the unlabeled target data by the ground-truth labels of the unlabeled data.

- Normal→Foggy: This scenario is different from the following DA-OD settings. In this scenario, the labeled source data and the unlabeled target data meet exactly the same class distribution since the target foggy data is rendered from the normal source data via a foggy translation model. As shown in Tab. 4, benefited from the given class distribution, we achieve a +21.5 mAP improvement over the “source only” baseline, exceeding previous state-of-the-arts by a large margin.

- Small→Large: Although there exists bias between the labeled and unlabeled data on foreground-foreground class distribution ($KL = 0.36$) and foreground-background ratio (18.5 boxes/img vs. 13.9 boxes/img), our method can still achieve 38.8 mAP, surpassing all the previous arts as far as we know. With access to the accurate class distribution (the ideal setting), our method can be further improved to 44.5 mAP.

- Across cameras & Synthetic→Real: In these settings, there is only one foreground class and exits foreground-background ratio bias (4.3 boxes/img vs. 9.6 boxes/img and 5.8 boxes/img vs. 9.6 boxes/img). Even using a biased class distribution, our method can still achieve satisfactory results. And our method can get further improvement equipped with the accurate class distribution (aka the ideal setting).

These DA-OD experiments demonstrate the robustness of the proposed LabelMatch framework, since the introduction of proposal self-assignment and RPLM weaken the prior dependence on the consistent class distribution assumption. From another perspective, these experiments also indicate that an accurate class distribution estimation can
training setting	COCO-standard	COCO-additional	VOC	Ablation	DA-OD
batch size for labeled data | 16 | 32 | 4 | 32 | 16
batch size for unlabeled data | 16 | 32 | 4 | 32 | 16
learning rate | 0.01 | 0.02 | 1.25e-3 | 0.02 | 0.016
learning rate step | - | (360K, 480K) | - | - | -
iterations | 160K | 540K | 160K | 40K | 20K
unsupervised loss weight λ | 2.0 | 2.0 | 2.0 | 2.0 | 2.0
EMA rate | 0.996 | 0.996 | 0.996 | 0.996 | 0.996
reliable ratio α | 0.2 | 0.2 | 0.2 | 0.2 | 0.2
mean score thresh T_{score} | 0.8 | 0.8 | 0.8 | 0.8 | 0.8
mean iou thresh T_{iou} | 0.8 | 0.8 | 0.8 | 0.8 | 0.8
multi-scale (strong augmentation) | (0.2, 1.8) | (0.2, 1.8) | (0.2, 1.8) | (0.5, 1.5) | (0.5, 1.5)
test score thresh | 0.001 | 0.001 | 0.001 | 0.001 | 0.001

Table 9. Training settings for different datasets and different tasks. “Ablation” means the training setting of the ablation studies in the main body of the paper, which is also used in all SSOD experiments in the Appendix.

<table>
<thead>
<tr>
<th>Process</th>
<th>Prob</th>
<th>Parameters</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Flip</td>
<td>0.5</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Multi-Scale</td>
<td>1.0</td>
<td>scale=(500, 800)</td>
<td>The short edge of image is random resized from 500 to 800.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>Prob</th>
<th>Parameters</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Flip</td>
<td>0.5</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Multi-Scale</td>
<td>1.0</td>
<td>ratio=(0.2, 1.8)</td>
<td>The short edge of image is random resized from 0.5L_{\text{short}} to 1.5L_{\text{short}}.</td>
</tr>
<tr>
<td>Color Jittering</td>
<td>0.8</td>
<td>(brightness, contrast, saturation, hue) = (0.4, 0.4, 0.4, 0.1)</td>
<td>Brightness factor is chosen uniformly from [0.6, 1.4], contrast factor is chosen uniformly from [0.6, 1.4], saturation factor is chosen uniformly from [0.6, 1.4], and hue value is chosen uniformly from [-0.1, 0.1].</td>
</tr>
<tr>
<td>Grayscale</td>
<td>0.2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>GaussianBlur</td>
<td>0.5</td>
<td>(sigma_x, sigma_y)=(0.1, 2.0)</td>
<td>Gaussian filter with $\sigma_x = 0.1$ and $\sigma_y = 2.0$ is applied</td>
</tr>
<tr>
<td>CutoutPattern1</td>
<td>0.7</td>
<td>scale=(0.05, 0.2), ratio=(0.3, 3.3)</td>
<td>Randomly selects a rectangle region in an image and erases its pixels.</td>
</tr>
<tr>
<td>CutoutPattern2</td>
<td>0.7</td>
<td>scale=(0.02, 0.2), ratio=(0.1, 6.0)</td>
<td>Randomly selects a rectangle region in an image and erases its pixels.</td>
</tr>
<tr>
<td>CutoutPattern3</td>
<td>0.7</td>
<td>scale=(0.02, 0.2), ratio=(0.05, 8.0)</td>
<td>Randomly selects a rectangle region in an image and erases its pixels.</td>
</tr>
</tbody>
</table>

Table 10. Details of data augmentations. In our ablation study, we use multi-scale with ratio=(0.5, 1.5) in order to use large batch size.

further promote the performance of DA-OD, emphasizing the importance of class distribution estimation. How to estimate an accurate class distribution when the labeled data and the unlabeled data are drawn from two different data distributions is an interesting future work.

D. MM Detection-based SSOD Codebase

Since different SSOD algorithms use different data augmentation strategies which have great impact on the performance, we build a unified MM Detection-based SSOD codebase for a fair comparison, named MMDet-SSOD for short, containing STAC [13], Unbiased-Teacher [8], Soft-Teacher [17] and LabelMatch.

We comprehensively run all algorithms in our MMDet-SSOD on COCO-standard dataset using the ablation training setting, and report the performance in Tab. 8 and Fig. 7. It is worth mentioning that the data augmentation, training iterations, batch size, and other training settings are all kept the same among these algorithms for a fair comparison. The entire source code will be released soon to support the development of SSOD in the community.

E. Implementation and Training Details

Training. We utilize different training settings for different datasets in our implementation. We use the SGD optimizer with a momentum rate 0.9 and weight decay 0.0001 in all experiments. The different training settings are summarized in Tab. 9.
Data augmentation. Our data augmentation strategies are modified from Unbiased Teacher [8], and the details are shown in Tab. 10. The weak augmentation is applied to the unlabeled data for pseudo labeling, and the strong augmentation is applied to both labeled and unlabeled data for model training. In our implementation, no cutout augmentation is applied to the labeled data when using strong data augmentation. In order to save computation resources, we use multi-scale with ratio=(0.5, 1.5) in the ablation studies.
References

