
Label Matching Semi-Supervised Object Detection
(Supplementary Materials)

Binbin Chen2, Weijie Chen1,2,, Shicai Yang2, Yunyi Xuan2, Jie Song1

Di Xie2, Shiliang Pu2, Mingli Song1, Yueting Zhuang1,

1Zhejiang University, 2Hikvision Research Institute
{chenbinbin8,chenweijie5,yangshicai,xuanyunyi,xiedi,pushiliang.hri}@hikvision.com

{sjie,songml,yzhuang}@zju.edu.cn

A. Consistent Class Distribution Assumption
LabelMatch is based on the assumption that consistent

class distribution exists between the labeled and unlabeled
data since they are drawn from the same data distribution.
To further verify this hypothesis, we present the compar-
isons between the labeled and unlabeled data in COCO-
standard and VOC using the ground-truth labels. As shown
in Fig. 1, the foreground-foreground class distribution and
the foreground-background ratio of the unlabeled data are
close to those of the labeled data in these SSOD settings.

B. More Results on COCO-standard
In this section, we present more experimental results

on COCO-standard using the ablation study setting (see
the fifth column in Tab. 9). Firstly, we carry out more
analysis about ACT in Appendix B.1. Then, we study
the effect of hyper-parameter in RPLM in Appendix B.2
and more analysis about proposal self-assignment in Ap-
pendix B.3. Finally, more qualitative results are exhibited
in Appendix B.4.

B.1. Analysis of ACT

In this part, we present more analysis about the proposed
ACT from flexibility and implementation.

Flexibility. To further demonstrate the flexibility of our
method, we extend STAC [13] with the proposed ACT, de-
noted as STAC⋆ for short. The original STAC first uses a
pretrained model to generate pseudo labels and then uses
a threshold of 0.9 to filter out low-quality pseudo labels,
which are finally fed back into the network with strong data
augmentation for model fine-tuning. Alternatively, STAC⋆

replaces the fixed threshold with the proposed ACT for
pseudo labeling and updates the thresholds every epoch.
Since there is no mean teacher in STAC, the label assign-
ment strategy of STAC⋆ simply follows the ignore assign-
ment, where uncertain pseudo labels are set as ignore labels.

Figure 1. Comparisons on class distribution between the la-
beled and unlabeled data. The blue and orange lines denote the
foreground-foreground class distribution in the labeled and unla-
beled data, respectively. “boxes/img” in the legend represents the
foreground-background ratio.

Figure 2. Performance comparisons between STAC and STAC⋆

on COCO-standard with 1% labeled data.

As shown in Fig. 2, there is an apparent performance gain
after equipping STAC with ACT, demonstrating the univer-
sality of the proposed ACT.

Online vs. Offline. As discussed in the paper, ACT are
updated to the evolved teacher during the training phase,
avoiding a negative bias caused by the outdated predictions.
There are two patterns to update ACT, one of which is intro-
duced in the paper, leveraging a subset of unlabeled data to
update ACT every K iterations, termed as offline version.
Here, we describe another pattern, named as online version,
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Figure 3. (a) Implementation of the online version of ACT. Each training iteration consists of two steps: (1) obtain predictions from the
teacher model and update the scores queue; (2) re-sort scores and update the ACT in real-time. (b) Performance comparison between the
online and offline version of ACT during the training phase on three COCO-standard settings with 1%, 5% and 10% labeled data.

ACT iterations 1% 5% 10%

LabelMatch Offline 40K 24.6 31.6 34.6
LabelMatch Online 40K 24.6 31.5 34.6

Table 1. Performance (AP50:95) comparisons between the online
and offline versions of ACT. We only run 1-fold using the ablation
training setting.

(a) (b)

Figure 4. (a) Thresholds in the training phrase. (b) The quality of
reliable pseudo labels.

which maintains a scores queue, as shown in Fig. 3a. The
teacher’s prediction is pushed into the scores queue for re-
freshing the ACT in each training iteration, which can be
seen as a special case of the offline version with K = 1.
Both versions of ACT can get satisfactory performance, as
shown in Fig. 3b and Tab. 1. We use the offline version in all
the experiments and will release the online version as well.

Thresholds evolve alone training. We select three head
classes and three tail classes on offline version for analy-
sis. As shown in Fig. 4, the thresholds (Eq.6 in the paper
to filter reliable pseudo labels) increase in both head and
tail classes during optimization. Specifically, the thresh-
olds for tail classes are more fluctuated than those for head
classes due to the scarce samples. Also, the quality of reli-

(Tscore, Tiou) AP50:95 (Tscore, Tiou) AP50:95 (Tscore, Tiou) AP50:95

(0.7, 0.7) 34.4 (0.8, 0.7) 34.4 (0.9, 0.7) 34.4
(0.7, 0.8) 34.5 (0.8, 0.8) 34.6 (0.9, 0.8) 34.5
(0.7, 0.9) 34.5 (0.8, 0.9) 34.6 (0.9, 0.9) 34.3

Table 2. Effect of hyper-parameters in RPLM.
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Figure 5. (a) The solution to measure the quality of predictions.
(b) The quality comparison of the predictions between two label
assignment methods in the training phase (lower is better).

able pseudo labels get increased as training goes on.

B.2. Analysis of RPLM Hyper-Parameter

There are two hyper-parameters (Tscore, Tiou) in the
component of reliable pseudo label mining (RPLM). Here
we use COCO-standard with 10% labeled data as the exper-
imental setting. As shown in Tab. 2, the best performance
appears when (Tscore, Tiou) = (0.8, 0.8). Therefore, we
use (Tscore, Tiou) = (0.8, 0.8) by default in all experiments
throughout the paper. It is also worth mentioning that our
method is not sensitive to these hyper-parameters.

B.3. Analysis of proposal self-assignment

To further analyze the quality of the teacher’s RoI
head predictions on the student’s proposals (proposals self-
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Figure 6. Qualitative comparisons between the single confidence threshold and the proposed LabelMatch. Red rectangles highlight the
false negatives, and yellow rectangles highlight the false positives. The score threshold for visualization is 0.6.

Data Split Normal→Foggy Small→Large Across cameras Synthetic→Real

labeled data Cityscapes (train) Cityscapes (train) KITTI Sim10K
unlabeled data Cityscapes-foggy (train) BDD100K (train) Cityscapes (train) Cityscapes (train)

test data Cityscapes-foggy (val) BDD100K (val) Cityscapes (val) Cityscapes (val)

Table 3. Four differnt domain shifts in DA-OD, which are contructed by five different datasets, including Cityscapes [2], Cityscapes-
foggy [11], KITTI [11], Sim10k [5] and BDD100K [5].
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Source only 19.2 47.9 40.8 34.8 7.8 24.2 36.0 36.4 30.9
CVPR2020:GPA [16] 24.7 54.1 46.7 32.9 41.1 32.4 38.7 45.7 39.5
CVPR2020:HTCN [1] 31.6 47.9 47.5 33.2 40.9 32.3 37.1 47.4 39.8
CVPR2021:MeGA [14] 25.4 52.4 49.0 37.7 46.9 34.5 39.0 49.2 41.8
CVPR2021:UMT [3] 34.1 48.6 46.7 33.0 46.8 30.4 37.3 56.5 41.7
LabelMatch (Ours) 42.0 62.2 55.4 45.3 55.1 43.5 51.5 64.1 52.4

Table 4. Results of adaptation from normal to foggy weathers.
“Source only” refers to the model trained by labeled source data.
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Source only 18.3 50.0 33.3 35.8 - 18.4 27.6 17.0 28.7
CVPR2019:SW-Faster [10] 15.2 45.7 29.5 30.2 - 17.1 21.2 18.4 25.3
CVPR2020:CR-DA [15] 19.5 46.3 31.3 31.4 - 17.3 23.8 18.9 26.9
LabelMatch (Ours) 39.4 54.6 37.4 42.9 - 25.7 29.8 41.7 38.8
LabelMatch† (Ours) 39.8 55.4 44.5 44.8 - 38.6 41.5 47.1 44.5

Table 5. Results of adaptation from small to large scale datasets. †

is an ideal setting that uses the ground-truth labels of the unlabeled
data for class distribution estimation.

assignment vs. IoU-based label assignment), we use the
ground truth for quantitative measurement. For each pro-

posal, we calculate the cross-entropy between the corre-
sponding prediction and the nearest ground truth (set as
background if IoU<0.5). As shown in Fig. 5, the predic-
tions by proposal self-assignment show better quality than
IoU-based one.

B.4. Qualitative Results

We perform the qualitative comparisons between the
proposed method and the mean teacher frameworks with a
fixed and single confidence threshold (varying from 0.7 to
0.9). As shown in Fig. 6, there are many false positives with
a low confidence threshold (yellow rectangles in the sec-
ond column), while many false negatives appear when us-
ing a high confidence threshold (red rectangles in the fourth
column). Although the manual search threshold (0.8) via
trial-and-error can achieve satisfactory results, our method
shows even better qualitative results.

C. Domain Adaptive Object Detection
LabelMatch is based on the consistent class distribution

assumption between the labeled and unlabeled data. To ex-



Figure 7. Performance (AP50:95) comparisons among different state-of-the-art SSOD methods with exactly the same training settings.

Method AP50 network

Source only 42.2 FR+VGG
CVPR2019:SW-Faster [10] 37.9 FR+VGG
CVPR2020:GPA [16] 47.9 FR+R50
CVPR2021:MeGA [14] 43.0 FR+VGG
ICCV2021:SimROD [9] 47.5 YOLOv5
LabelMatch (Ours) 51.0 FR+VGG
LabelMatch† (Ours) 52.2 FR+VGG

Table 6. Results of adaptation
across cameras. FR: Faster-
RCNN. † is an ideal setting
that uses the ground-truth la-
bels of the unlabeled data for
class distribution estimation.

Method AP50 network

Source only 36.5 FR+VGG
CVPR2019:SW-Faster [10] 40.7 FR+VGG
CVPR2020:GPA [16] 47.6 FR+R50
CVPR2021:MeGA [14] 44.8 FR+VGG
ICCV2021:SimROD [9] 52.1 YOLOv5
LabelMatch (Ours) 52.7 FR+VGG
LabelMatch† (Ours) 53.8 FR+VGG

Table 7. Results of adaptation
from synthetic to real. VGG:
VGG-16. † is an ideal setting
that uses the ground-truth la-
bels of the unlabeled data for
class distribution estimation.

Method Loss Threshold 1% 5% 10%

STAC [13] Cross-Entropy 0.9 16.1 24.0 28.1
Unbiased Teacher [8] Focal-Loss 0.7 22.0 28.6 32.1
Soft Teacher⋆ [17] Cross-Entropy 0.9 22.1 29.0 32.7
LabelMatch (Ours) Cross-Entropy ACT 24.6 31.5 34.6

Table 8. Benchmark results on COCO-standard: our re-
implementations with exactly the same training details and data
augmentation strategies. ⋆ denotes the re-implementation without
box-jitter trick. We only run 1-fold using the ablation training set-
ting due to the limitation of computation resources.

plore the robustness of LabelMatch to the prior dependence
on this assumption, we extend it to the scenario of domain
adaptive object detection (DA-OD) [6,10,14,16] where the
labeled source data and the unlabeled target are drawn from
two different data distributions.

Dataset. As described in Tab. 3, following the existing DA-
OD works, there are four common types of domain shifts
in DA-OD. We evaluate our method on these settings and
compare it with the state-of-the-arts.

Network Architecture. For a fair comparison with the ex-
isting DA-OD arts, we switch the backbone from ResNet-
50 [4] to VGG-16 [12] and remove the FPN [7] neck.

Implementation Details. The implementation is nearly the
same as SSOD, and more training hyper-parameters can be
found in Appendix E. Following previous works, we use
AP50 as our evaluation metric.

Results. To examine the prior dependence on the consis-
tent class distribution assumption, we evaluate LabelMatch
in two class distribution estimation manners: 1) The first
one is the same as described in the main body of the paper,
which estimates the class distribution of the unlabeled target
data by the annotations of the labeled source data; 2) The
second one is an ideal setting, which determines the class
distribution of the unlabeled target data by the ground-truth
labels of the unlabeled data.

• Normal→Foggy: This scenario is different from the fol-
lowing DA-OD settings. In this scenario, the labeled
source data and the unlabeled target data meet exactly
the same class distribution since the target foggy data is
rendered from the normal source data via a foggy trans-
lation model. As shown in Tab. 4, benefited from the
given class distribution, we achieve a +21.5 mAP im-
provement over the “source only” baseline, exceeding
previous state-of-the-arts by a large margin.

• Small→Large: Although there exists bias between the
labeled and unlabeled data on foreground-foreground
class distribution (KL = 0.36) and foreground-
background ratio (18.5 boxes/img vs. 13.9 boxes/img),
our method can still achieve 38.8 mAP, surpassing all the
previous arts as far as we know. With access to the accu-
rate class distribution (the ideal setting), our method can
be further improved to 44.5 mAP.

• Across cameras & Synthetic→Real: In these settings,
there is only one foreground class and exits foreground-
background ratio bias (4.3 boxes/img vs. 9.6 boxes/img
and 5.8 boxes/img vs. 9.6 boxes/img). Even using a bi-
ased class distribution, our method can still achieve satis-
factory results. And our method can get further improve-
ment equipped with the accurate class distribution (aka
the ideal setting).

These DA-OD experiments demonstrate the robustness
of the proposed LabelMatch framework, since the intro-
duction of proposal self-assignment and RPLM weaken the
prior dependence on the consistent class distribution as-
sumption. From another perspective, these experiments also
indicate that an accurate class distribution estimation can



training setting COCO-standard COCO-additional VOC Ablation DA-OD

batch size for labeled data 16 32 4 32 16
batch size for unlabeled data 16 32 4 32 16
learning rate 0.01 0.02 1.25e-3 0.02 0.016
learning rate step - (360K, 480K) - - -
iterations 160K 540K 160K 40K 20K
unsupervised loss weight λ 2.0 2.0 2.0 2.0 2.0
EMA rate 0.996 0.996 0.996 0.996 0.9996
reliable ratio α 0.2 0.2 0.2 0.2 0.2
mean score thresh Tscore 0.8 0.8 0.8 0.8 0.8
mean iou thresh Tiou 0.8 0.8 0.8 0.8 0.8
multi-scale (strong augmentation) (0.2, 1.8) (0.2, 1.8) (0.2, 1.8) (0.5, 1.5) (0.5, 1.5)
test score thresh 0.001 0.001 0.001 0.001 0.001

Table 9. Training settings for different datasets and different tasks. “Ablation” means the training setting of the ablation studies in the main
body of the paper, which is also used in all SSOD experiments in the Appendix.

Weak Augmentation

Process Prob Parameters Descriptions
Horizontal Flip 0.5 None None
Multi-Scale 1.0 scale=(500, 800) The short edge of image is random resized from 500 to 800.

Strong Augmentation
Process Prob Parameters Descriptions
Horizontal Flip 0.5 None None

Multi-Scale 1.0 ratio=(0.2, 1.8) The short edge of image is random resized from 0.5lshort to
1.5lshort.

Color Jittering 0.8 (brightness, contrast, saturation, hue)
= (0.4, 0.4, 0.4, 0.1)

Brightness factor is chosen uniformly form [0.6, 1.4], contrast
factor is chosen uniformly from [0.6, 1.4], saturation factor
is chosen uniformly from [0.6, 1.4], and hue value is chosen
uniformly from [-0.1, 0.1].

Grayscale 0.2 None None
GaussianBlur 0.5 (sigma x, simga y)=(0.1, 2.0) Gaussian filter with σx = 0.1 and σy = 2.0 is applied

CutoutPattern1 0.7 scale=(0.05, 0.2), ratio=(0.3, 3.3) Randomly selects a rectangle region in an image and erases its
pixels.

CutoutPattern2 0.7 scale=(0.02, 0.2), ratio=(0.1, 6.0) Randomly selects a rectangle region in an image and erases its
pixels.

CutoutPattern3 0.7 scale=(0.02, 0.2), ratio=(0.05, 8.0) Randomly selects a rectangle region in an image and erases its
pixels.

Table 10. Details of data augmentations. In our ablation study, we use multi-scale with ratio=(0.5, 1.5) in order to use large batch size.

further promote the performance of DA-OD, emphasizing
the importance of class distribution estimation. How to es-
timate an accurate class distribution when the labeled data
and the unlabeled data are drawn from two different data
distributions is an interesting future work.

D. MMDetection-based SSOD Codebase
Since different SSOD algorithms use different data aug-

mentation strategies which have great impact on the per-
formance, we build a unified MMDetection-based SSOD
codebase for a fair comparison, named MMDet-SSOD for
short, containing STAC [13], Unbiased-Teacher [8], Soft-
Teacher [17] and LabelMatch.

We comprehensively run all algorithms in our MMDet-

SSOD on COCO-standard dataset using the ablation train-
ing setting, and report the performance in Tab. 8 and Fig. 7.
It is worth mentioning that the data augmentation, training
iterations, batch size, and other training settings are all kept
the same among these algorithms for a fair comparison. The
entire source code will be released soon to support the de-
velopment of SSOD in the community.

E. Implementation and Training Details
Training. We utilize different training settings for different
datasets in our implementation. We use the SGD optimizer
with a momentum rate 0.9 and weight decay 0.0001 in all
experiments. The different training settings are summarized
in Tab. 9.



Data augmentation. Our data augmentation strategies are
modified from Unbiased Teacher [8], and the details are
shown in Tab. 10. The weak augmentation is applied to
the unlabeled data for pseudo labeling, and the strong aug-
mentation is applied to both labeled and unlabeled data for
model training. In our implementation, no cutout augmen-
tation is applied to the labeled data when using strong data
augmentation. In order to save computation resources, we
use multi-scale with ratio=(0.5, 1.5) in the ablation studies.
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