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1. Complement Dataset

Motivation. As shown in Table 1, many datasets are
developed for 3D hand pose estimation [16, 18, 13, 14,
19, 9, 6, 17, 2, 10, 5, 15, 12]. To collect real-world hand
data, existing datasets are usually captured using a multi-
view studio and annotated via semi-automatic model fitting
[19, 6]. However, these model-fitted datasets usually suffer
from noisy annotation, lack of background diversity, and
costly data collection. An alternative way is computer-aided
synthetic data [18, 3], which are superior in scalability,
distribution, annotation, and collection cost. In addition, a
good training dataset should avoid long-tailed distributions.
That is, both hand poses and viewpoints should be uni-
formly distributed. Unfortunately, we are not aware of any
existing dataset that fits this requirement. Some datasets try
to alleviate the problem of limited viewpoints by multi-view
rendering (e.g., MVHM [3] contains 8 views), but they are
still too sparse to cover all the possible views. Boukhayma
et al. [1] uniformly sampled MANO PCA components to
produce various hand poses. However, the PCA space
does not describe physical factors, so the corresponding
sampling results cannot be intuitively controlled. Thereby,
we are inspired to generate a more comprehensive hand
dataset with sufficient and uniformly distributed hand poses
and viewpoints.

Data Designs. We design a high-fidelity hand mesh with
5633 vertices and 11232 faces. Different from existing
hand datasets, we uniformly design hand poses. First, as
shown in Figure 1, we set two states for each finger, i.e.,
total bending and extending. Then, we obtain 32 base
poses by combining five finger states. The combination of
these base poses results in 496 pose pairs. For each pair,
we uniformly interpolate three intermediate poses from one
pose to another in Maya software1 (as shown in Figure 2).
In total, we obtain 1520 uniformly distributed hand poses.

*Corresponding author, chenxingyu@kuaishou.com
1https://www.autodesk.com/

Dataset Type Size Mesh UP MV
STB [16] real 36K × × ×
RHD [18] synthetic 44K × × ×

GANerated Hands [12] synthetic 331K × × ×
SeqHAND [15] synthetic 410K ✓ × ×
EgoDexter [13] real 3K × × ×

Dexter+Object [14] real 3K × × ×
FreiHAND [19] real 134K ✓ × ×

YoutubeHand [9] real 47K ✓ × ×
ObMan [8] synthetic 153K ✓ × ×
HO3D [7] real 77K ✓ × ×

DexYCB [2] real 528K ✓ × ×
H2O [10] synthetic 571K ✓ × ×
FPHA [5] synthetic 105K × × ×
H3D [17] real 22K ✓ × ✓(15)
MHP [6] real 80K × × ✓(4)

MVHM [3] synthetic 320K ✓ × ✓(8)
InterHand2.6M [11] real 2.6M ✓ × ✓(80)

ours synthetic 328K ✓ ✓ ✓(216)
Table 1. Comparison among RGB-based 3D hand datasets. “MV”
means multi-view, and the number in brackets shows the total
number of views. “UP” denotes uniform pose distribution.

Figure 1. Base poses. Under the consideration of politeness, one
pose with middle finger extending is not shown.

For each pose sample, we provide its dense viewpoints
by rendering. To this end, we uniformly define 216
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Figure 2. Intermediate poses from base pose 7 to base pose 15.

Figure 3. Illustration of viewpoints to render the dataset. Each
red point denotes a camera position.The camera points to the palm
center.
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Figure 4. Annotations.

hemispherical-arranged camera positions. As shown in
Figure 3, the longitude ranges from 0 to 2π while the
latitude ranges from 0 to π/2. Adjacent positions differ in
longitude or latitude by π/18 or π/12. All cameras point
to the palm center so that the hand locates at the center of
rendered images. Because the end of the wrist locates at
the sphere center, the hemispherical sampling contains the
first-person perspectives. As for the background, we col-
lect high-dynamic-range (HDR) imaging with real scenes
and illumination for rendering so that our hand mesh can
realistically blend into various scenes. Figure 11 illustrates
rendered samples with our viewpoints.

The automatically generated annotations involve no
noise. Consistent with mainstream datasets, we design a
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Figure 5. The pre-training architecture using our data.
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Figure 6. Consistency loss based on data augmentation.

pose-agnostic matrix to map our dense topology to MANO-
style mesh with 778 vertices and 1538 faces. As shown
in Figure 4, we provide annotations of our designed dense
mesh, MANO-style mesh, 3D pose, 2D pose, silhouette,
depth map, and intrinsic camera parameters.

Discussion. The limitation of our data is the lack of
shape/texture diversity. Additionally, we only consider
finger bend, and we plan to model finger splay to extend
this dataset to cover the entire pose space uniformly.

Network pre-training. To pre-train the 2D encoding net-
work, we design a 2D pose estimation task without the
need of 3D annotation. In the main text, we analyzes
2D representations with heatmap and position regression.
Hence, as shown in Figure 5, we equally consider these
representations during the pre-training step. That is, both
heatmap and positional joint landmark are supervised. The
model is pre-trained for 80 epochs with a mini-batch size of
128. The initial learning rate is 10−3, which is divided by
10 at the 20th, 40th, and 60th epochs. The input resolution
is 128× 128.

2. Analysis and Application
Diagram of our consistency loss. As shown in Figure 6,
two views are derived with data augmentation with an input
image. Then consistency loss can be designed in both 2D
and 3D spaces as Equation 11 in the main text.

Explanation of dataset setting. During the ablation
study in the main text, we use RHD, FreiHAND, and
HO3Dv2 to evaluate different properties. Because Frei-
HAND and HO3Dv2 do not release ground truth and the of-
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Figure 7. Qualitative visualization of 2D pose, aligned mesh, and
side-view mesh.
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Figure 8. Comparison of GhostStack and ResNet18 on a challeng-
ing HO3Dv2 sample.

Figure 9. Typical failure cases.

ficial tools do not support 2D evaluation, RHD is employed
for testing 2D accuracy. HO3Dv2 is a sequential dataset,
so it is adopted to reflect temporal coherence. However,
HO3Dv2 highlights hand-object interaction, which is not
our topic. In contrast, FreiHAND highlights various hand
poses, lighting conditions, etc., so we use it for evaluating
3D accuracy.

The effect of our complement data during fine-tuning.
As shown in Figure 7, when our data are employed in
fine-tuning step, it can improve the model performance on
difficult pose prediction.

Visualization on HO3Dv2. Referring to Table 6 in the
main text, our MobRecon outperforms some ResNet-based
models. We observe that this phenomenon is related to gen-
eralization performance. As shown in Figure 8, HO3Dv2
contains massive seriously occluded samples. Under this
extreme condition, our model can produce a physically
correct prediction while the ResNet-based model collapses.

Failure case analysis. As shown in Figure 9, MobRecon
could suffer from failure cases as for challenging poses.
Typically, self-occlusion by finger splay is hard to accu-
rately predict because they are tail-distributed poses in most
datasets. We will solve this problem by improving our
complement data, as stated in the above section.

Figure 10. We develop an AR effect with MobRecon and deploy it
on mobile devices. This figure is captured with iPhone12.

More qualitative results. Figure 12 illustrates compre-
hensive qualitative results of our predicted 2D pose, aligned
and side-view mesh. The challenges include challenging
poses, object occlusion, truncation, and bad illumination.
Overcoming these difficulties, our method can generate
accurate 2D pose and 3D mesh.

Qualitative comparison on temporal coherence. We
record a video snippet to demonstrate temporal coherence,
where we keep the camera and hand static to produce low
acceleration. Despite the static condition, the network
input could be temporally unstable because of detection
jitter etc. The ground-truth pose is straightforward (see
Figure 13), and all compared models can easily obtain high
accuracy. Hence, temporal performance can be exclusively
revealed in this experiment. As shown in Figure 13, our
MobRecon performs better than CMR [4] in terms of 2D/3D
pose consistency. In addition, we also compute the root
coordinates with the method in [4] and achieve better root
recovery stability. Besides, we also complement 2D PCK
curves on RHD, which demonstrate that our method has
better 2D pose accuracy. Beyond accuracy and temporal
coherence, our MobRecon with MapReg can produce better
articulated structures because of global receptive field and
adaptive inter-landmark constraints (see Figure 6 in the
main text).

Mobile application. Based on our MobRecon, a virtual
ring can be worn with AR technique (Figure 10).



Figure 11. Rendered samples with dense and uniform viewpoints.



Figure 12. Qualitative visualization of 2D pose, aligned mesh, and side-view mesh on FreiHAND, RHD, and HO3Dv2. Our method is
robust enough to handle cases of occlusion, truncation, challenging poses, and bad illumination.
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Figure 13. We record a video snippet with a straightforward and static hand pose (see the bottom right corner) to compare the temporal
performance and articulated structure.
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