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In this supplementary material, we discuss (a) archi-
tecture details of Mobile-Former variants over multiple
FLOPs, (b) more experimental results including inference
latency and additional ablations, and (c) visualization of the
two-way bridge (Mobile→Former and Mobile←Former).

1. Mobile-Former Architecture
Seven model variants: Table 1 shows six Mobile-Former
models (508M–52M). The smallest model Mobile-Former-
26M has similar architecture to Mobile-Former-52M ex-
cept replacing all 1×1 convolutions with group convolution
(group=4). They are used either in image classification or
as the backbone of object detectors. These models are man-
ually designed without searching for the optimal architec-

ture parameters (e.g. width or depth). We follow the well
known rules used in MobileNet [2, 6] : (a) the number of
channels increases across stages, and (b) the channel ex-
pansion rate starts from three at low levels and increases
to six at high levels. For the four bigger models (508M–
151M), we use six global tokens with dimension 192 and
eleven Mobile-Former blocks. But these four models have
different widths. Mobile-Former-96M and Mobile-Former-
52M are shallower (with only eight Mobile-Former blocks)
to meet the low computational budget.

Downsample Mobile-Former block: Note that stage
2–5 has a downsample variant of Mobile-Former block
(denoted as M-F↓ in Table 1) to handle the spatial down-
sampling. M-F↓ has a slightly different Mobile sub-block

Stage Mobile-Former-508M Mobile-Former-294M Mobile-Former-214M Mobile-Former-151M Mobile-Former-96M Mobile-Former-52M
Block #exp #out Block #exp #out Block #exp #out Block #exp #out Block #exp #out Block #exp #out

token 6×192 6×192 6×192 6×192 4×128 3×128
stem conv 3×3 – 24 conv 3×3 – 16 conv 3×3 – 12 conv 3×3 – 12 conv 3×3 – 12 conv 3×3 – 8

1 bneck-lite 48 24 bneck-lite 32 16 bneck-lite 24 12 bneck-lite 24 12 bneck-lite 24 12

2 M-F↓ 144 40 M-F↓ 96 24 M-F↓ 72 20 M-F↓ 72 16 M-F↓ 72 16 bneck-lite↓ 24 12
M-F 120 40 M-F 96 24 M-F 60 20 M-F 48 16 M-F 36 12

3 M-F↓ 240 72 M-F↓ 144 48 M-F↓ 120 40 M-F↓ 96 32 M-F↓ 96 32 M-F↓ 72 24
M-F 216 72 M-F 192 48 M-F 160 40 M-F 96 32 M-F 96 32 M-F 72 24

4

M-F↓ 432 128 M-F↓ 288 96 M-F↓ 240 80 M-F↓ 192 64 M-F↓ 192 64 M-F↓ 144 48
M-F 512 128 M-F 384 96 M-F 320 80 M-F 256 64 M-F 256 64 M-F 192 48
M-F 768 176 M-F 576 128 M-F 480 112 M-F 384 88 M-F 384 88 M-F 288 64
M-F 1056 176 M-F 768 128 M-F 672 112 M-F 528 88

5

M-F↓ 1056 240 M-F↓ 768 192 M-F↓ 672 160 M-F↓ 528 128 M-F↓ 528 128 M-F↓ 384 96
M-F 1440 240 M-F 1152 192 M-F 960 160 M-F 768 128 M-F 768 128 M-F 576 96
M-F 1440 240 M-F 1152 192 M-F 960 160 M-F 768 128 conv 1×1 – 768 conv 1×1 – 576

conv 1×1 – 1440 conv 1×1 – 1152 conv 1×1 – 960 conv 1×1 – 768
pool – – 1632 – – 1344 – – 1152 – – 960 – – 896 – – 704concat
FC1 – – 1920 – – 1920 – – 1600 – – 1280 – – 1280 – – 1024
FC2 – – 1000 – – 1000 – – 1000 – – 1000 – – 1000 – – 1000

Table 1. Specification of Mobile-Former models. “bneck-lite” denotes the lite bottleneck block [3]. “bneck-lite↓” denotes the downsam-
ple variant of lite bottleneck, in which the depthwise convolution has stride 2. “M-F” denotes the Mobile-Former block and “M-F↓” denotes
the Mobile-Former block for downsampling. Mobile-Former-26M has a similar architecture to Mobile-Former-52M except replacing all
1×1 convolutions with group convolution (group=4).
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Model Learing Rate Weight Decay Dropout
Mobile-Former-26M 8e-4 0.08 0.1
Mobile-Former-52M 8e-4 0.10 0.2
Mobile-Former-96M 8e-4 0.10 0.2
Mobile-Former-151M 9e-4 0.10 0.2
Mobile-Former-214M 9e-4 0.15 0.2
Mobile-Former-294M 1e-3 0.20 0.3
Mobile-Former-508M 1e-3 0.20 0.3

Table 2. Hyper-parameters of seven Mobile-Former models for
ImageNet [1] classification.

Stage E2E-MF E2E-MF E2E-MF E2E-MF
508M 294M 214M 151M

query 100×256 100×256 100×256 100×256
1
32

projection projection projection projection
†M-F ×5 †M-F ×6 †M-F ×5 †M-F ×3

1
16

up-conv up-conv up-conv up-conv
M-F ×2 M-F ×3 M-F ×2 M-F ×2

1
8

up-conv – – –M-F ×2

Table 3. Specification of head variants in end-to-end Mobile-
Former object detectors. 100 object queries with dimension 256
are used. “projection” denotes projecting an input feature map lin-
early to 256 channels (through a 1×1 convolution). “up-conv” de-
notes a convolutional block for upsampling that includes bilinear
interpolation followed by a 3×3 depthwise and a pointwise con-
volution. “M-F×2” refers to stacking two Mobile-Former blocks.
In the detection head, we use lite bottleneck [3] in Mobile sub-
block to reduce the computational cost. At the lowest resolution
1
32

, multi-head attention is added into Mobile, which is denoted as
†M-F.

that includes four (instead of three) convolutional layers
(depthwise→pointwise→depthwise→pointwise), where
the first depthwise convolution layer has stride two. The
number of channels expands in each depthwise convolu-
tion, and squeezes in the following pointwise convolution.
This saves computations as the two costly pointwise
convolutions are performed at the lower resolution after
downsampling.

Training hyper-parameters: Table 2 lists three hyper-
parameters (initial learning rate, weight decay and dropout
rate) used for training Mobile-Former models in ImageNet
classification. Their values increase as the model becomes
bigger to prevent overfitting. Our implementation is based
on timm framework [8].

Head model variants in end-to-end object detection: Ta-
ble 3 shows the head structures for four end-to-end Mobile-
Former detectors. All share similar structure and have 100
object queries with dimension 256. The largest model
(E2E-MF-508M) has the heaviest head with 9 Mobile-
Former blocks over three scales, while the other three
smaller models have 9, 7, 5 blocks respectively over two
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Figure 1. Inference latency over different image sizes. The
latency is measured on an Intel(R) Xeon(R) CPU E5-2650 v3
(2.3GHz), following the common settings (single-thread with
batch size 1) in [2, 6]. Compared to MobileNetV3 [2] and Shuf-
fleNetV2 [5], Mobile-Former is slower on small images, but has
faster inference on larger images. Best viewed in color.

scales to save computations.
All models start by projecting the input feature map lin-

early to 256 channels through a 1×1 convolution. Then
multiple Mobile-Former blocks are stacked with upsam-
pling block in between to move upscale. The upsampling
block (denoted as “up-conv”) includes three steps: (a) in-
creasing feature resolution by two using bilinear interpo-
lation, (b) adding the feature output from the backbone,
and (c) applying a 3×3 depthwise and a pointwise convo-
lution. To handle the computational boost due to resolution
increasing, we use lite bottleneck [3] in Mobile. Moreover,
we find that the performance can be further improved at a
small additional cost by adding multi-head attention in Mo-
bile sub-block at the lowest scale ( 1

32 ) of the head (denoted
as †M-F). It is especially helpful for detecting large objects.

2. More Experimental Results
Inference latency (CPU): Figure 1 compares Mobile-
Former-214M with MobileNetV3 Large [2] and Shuf-
fleNetV2 2× [5] on inference latency. Mobile-Former is
more accurate than the two baselines (76.7% vs. 75.2%
vs. 74.9% top-1 on ImageNet). The latency is measured
on an Intel(R) Xeon(R) CPU E5-2650 v3 (2.3GHz), fol-
lowing the common settings (single-thread with batch size
1) in [2,6]. The comparison is performed on multiple image
sizes due to the resolution variation across tasks (e.g. clas-
sification, detection). Mobile-Former is slower at low res-
olution (224×224). As the image resolution increases, the
gap shrinks until resolution 750×750, after which Mobile-
Former has faster inference.

This is because Former and embedding projections in
Mobile→Former and Mobile←Former are resolution inde-
pendent, and their PyTorch implementations are not as ef-
ficient as convolution. Thus, the overhead is relative large
when image is small, but becomes negligible as image size
grows. The runtime performance of Mobile-Former can be
further improved by optimizing the implementation of these



Kernel Size in Mobile #Param MAdds Top-1 Top-5
3×3 11.4M 294M 77.8 93.7
5×5 11.5M 332M 77.9 93.9

Table 4. Ablation of the kernel size in the depthwise convolu-
tion (in Mobile sub-block). The evaluation is performed on Ima-
geNet [1] classification. Mobile-Former-294M is used.

MHA in Mobile AP AP50 AP75 APS APM APL
MAdds #Params

at scale 1
32 (G) (M)

42.5 61.0 46.0 23.2 46.3 58.7 36.0 23.7
✓ 43.3 61.8 46.8 24.6 47.0 60.4 41.4 26.3

Table 5. Ablation of multi-head attention (MHA) in Mobile
at resolution 1

32
of the detection head. The evaluation is per-

formed on COCO [4] object detection. Both models are trained
on train2017 for 300 epochs and tested on val2017. E2E-
MF-508M is used. MAdds is based on image size 800×1333.

components. We will investigate this in the future work.

Inference latency (GPU): We report GPU performance of
Mobile-Former-214M, and compare it with MobileNetV3
Large [2] and ShuffleNetV2 2× [5]. Their top-1 accuracy
on ImageNet are 76.7%, 75.2%, 74.9% respectively. Our
Mobile-Former achieves 29.8 FPS on 2K resolution, which
is slower than MobileNetV3 (34.7 FPS) and ShuffleNetV2
(39.8 FPS). This is because Former and two-way cross at-
tention are neither GPU efficient nor implemented in paral-
lel to Mobile in PyTorch. This could be improved by imple-
menting Mobile and Former in parallel with proper alloca-
tion of GPU cores.

Ablation of the kernel size in Mobile: We perform an abla-
tion on the kernel size of the depthwise convolution in Mo-
bile, to validate the contribution of Former and bridge on
global interaction. Table 4 shows that the gain of increas-
ing kernel size (from 3×3 to 5×5) is negligible. We believe
this is because Former and the bridge enlarge the reception
field for Mobile via fusing global features. Therefore, using
larger kernel size is not necessary in Mobile-Former.

Ablation of multi-head attention in Mobile at resolution
1
32 of the detection head: Table 5 shows the effect of using
multi-head attention (MHA) in the five blocks at the low-
est resolution 1

32 (†M-F in Table 3). Without MHA, a solid
performance (42.5 AP) is achieved at low FLOPs (36.0G).
Adding MHA gains 0.8 AP with 15% additional computa-
tional cost. It is especially helpful for detecting large objects
(58.7→60.4 APL).

3. Visualization
In order to understand the collaboration between Mobile

and Former, we visualize the cross attention on the two-way
bridge (i.e. Mobile→Former and Mobile←Former) in Fig-
ure 2, 3, and 4. The ImageNet pretrained Mobile-Former-

Figure 2. Cross attention over the entire featuremap for the
first token in Mobile→Former across all Mobile-Former blocks.
Attention is normalized over pixels, showing the focused region.
The focused region changes from low to high levels. The token
starts paying more attention to edges/corners at block 2–4. Then it
focuses more on a large region rather than scattered small pieces
at block 5–12. The focused region shifts between the foreground
(person and horse) and background (grass). Finally, it locks the
most discriminative part (horse body and head) for classification.
Best viewed in color.

Figure 3. Cross attention in Mobile←Former separates fore-
ground and background at middle layers. Attention is normal-
ized over tokens showing the contribution of different tokens at
each pixel. Block 8 is chosen where background pixels pay more
attention to the first token and foreground pixels pay more atten-
tion to the last token. Best viewed in color.

294M is used, which includes six global tokens and eleven
Mobile-Former blocks. We observe three interesting pat-



Figure 4. Visualization of the two-way cross attention: Mobile→Former and Mobile←Former. Mobile-Former-294M is used, which
includes six tokens (each corresponds to a column). Four blocks with different input resolutions are selected and each has two attention
heads that are visualized in two rows. Attention in Mobile→Former (left half) is normalized over pixels, showing the focused region per
token. Attention in Mobile←Former (right half) is normalized over tokens showing the contribution of different tokens at each pixel. The
cross attention has less variation across tokens at high levels than low levels. Specifically, token 2–5 in the last block have very similar
cross attention. Best viewed in color.

terns as follows:

Patten 1 – global tokens shift focus over levels: The fo-
cused regions of global tokens change progressively from
low to high levels. Figure 2 shows the cross attention over
pixels for the first token in Mobile→Former. This token be-
gins focusing on local features, e.g. edges/corners (at block
2-4). Then it pays more attention to regions with connected
pixels. Interestingly, the focused region shifts between fore-
ground (person and horse) and background (grass) across
blocks. Finally, it locates the most discriminative region
(horse body and head) for classification.

Pattern 2 – foreground and background are separated
in middle layers: The separation between foreground and
background is surprisingly found in Mobile←Former at
middle layers (e.g. block 8). Figure 3 shows the cross
attention over six tokens for each pixel in the featuremap.
Clearly, the foreground and background are separated in the
first and last tokens. This shows that global tokens learn
meaningful prototypes that cluster pixels with similar se-

mantics.

Pattern 3 – attention diversity across tokens diminishes:
The attention has more diversity across tokens at low lev-
els than high levels. As shown in Figure 4, each column
corresponds to a token, and each row corresponds to a head
in the corresponding multi-head cross attention. Note that
the attention is normalized over pixels in Mobile→Former
(left half), showing the focused region per token. In con-
trast, the attention in Mobile←Former is normalized over
tokens, comparing the contribution of different tokens at
each pixel. Clearly, the six tokens at block 3 and 5 have
different cross attention patterns in both Mobile→Former
and Mobile←Former. Similar attention maps over tokens
are clearly observed at block 8. At block 12, the last five
tokens share a similar attention pattern. Note that the first
token is the classification token fed into the classifier. The
similar observation on token diversity has been identified in
recent studies on ViT [7, 9, 10]. The full visualization of
two-way cross attention for all blocks is shown in Figure 5.



Figure 5. Visualization of the two-way cross attention: Mobile→Former and Mobile←Former. Mobile-Former-294M is used, which
includes six tokens (each corresponds to a column) and eleven Mobile-Former blocks (block 2–12) across four stages. Each block has two
attention heads that are visualized in two rows. Attention in Mobile→Former (left) is normalized over pixels, showing the focused region
per token. Attention in Mobile←Former (right) is normalized over tokens showing the contribution of different tokens at each pixel.
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