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Abstract

In this supplementary material, we first provide a de-
tailed summary of Riemannian geometry in Section 1. Sub-
sequently, we add further details into our Riemannian op-
timization, justify the design of the Riemannian step size
in Section 2.1, and derive the inverse projection for dif-
ferent rotation manifolds in Section 2.2. Since we have
demonstrated an extension to the manifold of unit vectors
in the paper, we also provide the gradients and optimiza-
tion operators for this manifold in Section 3. We analyse
the computational cost in Section 4. In addition, we re-
port new experiment results of 3d object pose estimation
from PASCAL3D+, camera relocalization on outdoor Cam-
bridge Landscape dataset and 3d object pose estimation us-
ing flow loss in Section 5. Last but not least, we include
implementation details of our experiments in Section 6 and
add some information about the related rotation represen-
tation for integrity in Section 7.

1. More on Riemannian Geometry

In this part, we supplement the definitions in Section 3.1
of the main paper to allow for a slightly more rigorous spec-
ification of the exponential map for interested readers.

We denote the union of all tangent spaces as the tangent
bundle: T M = ∪x∈MTxM. Riemannian metric Gx in-
duces a norm ∥u∥x ,∀u ∈ TxM locally defining the geom-
etry of the manifold and allows for computing the length of
any curve γ : [0, 1] → M, with γ(0) = x and γ(1) = y

as the integral of its speed: ℓ(γ) =
∫ 1

0
∥γ̇(t)∥γ(t)dt. The

notion of length leads to a natural notion of distance by tak-
ing the infimum over all lengths of such curves, giving the
Riemannian distance on M, d(x,y) = infγ ℓ(γ). The con-
stant speed length minimizing curve γ is called a geodesic
on M.

†: He Wang is the corresponding author (hewang@pku.edu.cn).

By the celebrated Picard Lindelöf theorem [2], given any
(x,v) ∈ T M, there exists a unique maximal geodesic γv
such that γv(0) = x and γ̇v(0) = v. Hence, we can de-
fine a unique diffeomorphism or exponential map, sending
x to the endpoint of the geodesic: expx(v) = γv(1). We
will refer to the well-defined, smooth inverse of this map
as the logaritmic map: logx y ≜ exp−1

x (v). Note that the
geodesic is not the only way to move away from x in the di-
rection of v on M. In fact, any continuously differentiable,
smooth map Rx : TxM 7→ M whose directional derivative
along v is identity, i.e. DRx(0)[v] = v and Rx(0) = x
allows for moving on the manifold in a given direction v.
Such Rx, called retraction, constitutes the basic building
block of any on-manifold optimizer as we use in the main
paper. In addition to those we also speak of a manifold
projector π : X 7→ M is available for the manifolds we
consider in this paper. Note that, most of these definitions
directly generalize to matrix manifolds such as Stiefel or
Grassmann [1].

2. Projective Manifold Gradient on SO(3)

2.1. Details of Riemannian Optimization on SO(3)

Riemannian gradient on SO(3). Since we mainly focus
on the SO(3) manifold in this paper, we will further show
the specific expression of some related concepts of SO(3)
below.

Firstly, SO(3) is defined as a matrix subgroup of the gen-
eral linear group GL(3):

SO(3) = {R ∈ R3×3 : R⊤R = I,det(R) = 1}. (1)

The tangent space of a rotation matrix in SO(3) is iso-
morphic to R3 making SO(3) an embedded submanifold of
the ambient Eucldiean space X . Hence, SO(3) inherits the
metric or the inner product of its embedding space, X .

Since SO(3) is also a Lie group, elements of the tangent
space ϕ∧ ∈ TIM can be uniquely mapped to the manifold

maximal refers to the fact that the curve is as long as possible.



M through the exponential map:

expI(ϕ
∧) = I+ ϕ∧ +

1

2!
(ϕ∧)2 +

1

3!
(ϕ∧)3 + ... , (2)

where I ∈ SO(3) is the identity matrix and ∧ is a skew-
symmetric operator ∧ : R3 → TIM as

ϕ∧ =

 0 −ϕz ϕy
ϕz 0 −ϕx
−ϕy ϕx 0

 (3)

Due to the nature of the Lie group, we can expand the
formula in Eq. (2) from the tangent space of the identity,
TIM, to TRM by simply multiplying by an R:

expR(ϕ∧) = R

( ∞∑
n=0

(
1

n!
(ϕ∧)n)

)
(4)

If the vector ϕ is rewritten in terms of a unit vector ω
and a magnitude θ, the exponential map can further be sim-
plified as

ExpR(ϕ) = R(I+ sin θ ω∧ + (1− cos θ)(ω∧)2) (5)

which is well known as the Rodrigues formula [7]. Follow-
ing [9], we have

∂

∂ϕx
ExpR(ϕ)

∣∣∣∣
ϕ=0

= R

(
cos θ

∂θ

∂ϕx
ω∧
)∣∣∣∣

ϕ=0

= Rx∧ (6)

where x = (1, 0, 0) ∈ R3. For ϕy and ϕz , there are the
similar expressions of the gradient. Finally we can have

grad Lf(R) =

(
∂f(R)

∂R

∂

∂ϕ
ExpR(ϕ)

∣∣∣∣
ϕ=0

)∧

(7)

Riemannian gradient descent on SO(3). We are now
ready to state the Riemannian optimization in the main pa-
per in terms of the exponential map:

Rk+1 = ExpRk
(−τk∇ϕ). (8)

Note that if we consider the most commonly used L2 loss
f(R) = ∥R−Rgt∥2F , where

R =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 ∈ SO(3), Rgt =

x1 y1 z1
x2 y2 z2
x3 y3 z3

 ∈ SO(3),

we can get an analytical expression of ∇ϕ =
(∇ϕx,∇ϕy,∇ϕz) as follows:

∇ϕx =
∂f(R)

∂R
∗ Rx

∧

= 2

∣∣∣∣∣∣
∣∣∣∣∣∣
a1 − x1 b1 − y1 c1 − z1

a2 − x2 b2 − y2 c2 − z2
a3 − x3 b3 − y3 c3 − z3

0 c1 −b1
0 c2 −b2
0 c3 −b3

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2 ∗
3∑

i=1

(bi ∗ zi − ci ∗ yi) (9)

Similarly, we have ∇ϕy = 2 ∗
∑3

i=1(ci ∗ xi − ai ∗ zi) and
∇ϕz = 2 ∗

∑3
i=1(ai ∗ yi − bi ∗ xi).

τconverge in ablation study. We have mentioned in Sec-
tion 4.3 of the main paper that τ should be small at the be-
ginning of training and be large when converging. This is
because a small τ can yield Rg closer to R and greatly alle-
viate the reverse problem at the beginning stage of training
discussed in Section 4.3. Later in training, a large τ can help
us converge better. The initial τ will not influence the final
results too much, and we just need to choose a reasonable
value. But the final τ matters.

Right before convergence, our ideal choice for the final
τ would be τgt. Given that the value of τgt will change
according to the geodesic distance between R and Rgt, we
instead choose to find a suitable constant value to act like
τgt when converging, which we denotes as τconverge.

Lemma 1. The final value of τconverge satisfies:

Rgt = lim
<R,Rgt>→0

RR(−τconverge grad L(f(R))) (10)

where < R,Rgt > represents the angle between R and
Rgt.

Proof. Considering the symmetry, without loss of general-
ity, we assume that R = I, which will simplify the deriva-
tion. Based upon the conclusion in Eq. (9), when we use L2
loss, we have ∇ϕ = (2∗(z2−y3), 2∗(x3−z1), 2∗(y1−x2))
and grad Lf(R) = (∇ϕ)∧ = 2(R⊤

gt − Rgt). Taking the
manifold logarithm of both sides, we get:

logR(Rgt) = lim
<R,Rgt>→0

−τconverge grad Lf(R) (11)

The solution for τconverge can then be derived as follows:

τconverge = lim
<R,Rgt>→0

− logR(Rgt)

grad Lf(R)

= lim
θ→0

−
(ϕgt)

∧

2(R⊤
gt −Rgt)

= lim
θ→0

−
(ϕgt)

∧

2 sin θ(((ωgt)∧)⊤ − (ωgt)∧)

= lim
θ→0

θ

4 sin θ

=
1

4
(12)

where (ϕgt)
∧ = logI(Rgt) = θ(ωgt)

∧, θ =< I,Rgt >

Note that though τconverge = 1
4 is only true for the L2

loss, we can solve τconverge for other frequently used loss
formats, e.g., geodesic loss [5]. If we use geodesic loss θ2, it
can be computed that τconverge = 1

2 . We leave the detailed
derivation to the interested readers.

2.2. Derivations of Inverse Projection

For different rotation representations, we follow the
same process to find its inverse projection: we first find the
inverse image space π−1(xg), then project x to this space
resulting in xgp, and finally get our (regularized) projective
manifold gradient.



Quaternion We need to solve

xgp = argmin
xg∈π−1

q (x̂g)

∥xg − x∥22, (13)

where x is the raw output of our network in ambient space
R4, x̂g is the next goal in representation manifold S3, and
xg is the variable to optimize in ambient space R4. Recall
π−1
q (x̂g) = {x | x = kx̂g, k ∈ R and k > 0}, and we can

have
∥x− xg∥22 = x2 − 2kx · x̂g + k2x̂2

g (14)

Without considering the condition of k > 0, We can see
when k =

x·x̂g

x̂2
g

= x · x̂g the target formula reaches min-
imum. Note that when using a small τ , the angle between
x̂g and x is always very small, which means the condition
of k = x · x̂g > 0 can be satisfied naturally. For the sake of
simplicity and consistency of gradient, we ignore the lim-
itation of k no matter what value τ takes. Therefore, the
inverse projection is xgp = (x · x̂g)x̂g .

6D representation We need to solve

[ugp,vgp] = argmin
[ug,vg ]∈π

−1
6D

([ûg,v̂g ])

(∥ug − u∥2
2 + ∥vg − v∥2

2) (15)

where [u,v] is the raw output of network in ambient space
R6, [ûg, v̂g] is the next goal in representation manifold
V2(R3) and [ug,vg] is the variable to optimize in ambi-
ent space R6. Recall π−1

6D([ûg, v̂g]) = {[k1ûg, k2ûg +
k3v̂g] | k1, k2, k3 ∈ R and k1, k3 > 0}. We can see that
ug and vg are independent, and ug is similar to the situa-
tion of quaternion. So we only need to consider the part of
vg as below:

∥v−vg∥22 = v2+k22û
2
g+k

2
3v̂

2
g−2k2v·ûg−2k3v·v̂g (16)

For the similar reason as quaternion, we ignore the condi-
tion of k3 > 0 and we can see when k2 = v · ûg and
k3 = v · v̂g , the target formula reaches minimum. There-
fore, the inverse projection is [ugp,vgp] = [(u · ûg)ûg, (v ·
ûg)ûg + (v · v̂g)v̂g]

9D representation For this representation, obtaining the
inverse image π−1

9D is not so obvious. Recall π9D(x) =
UΣ′V⊤, where U and V are left and right singular vectors
of x decomposed by SVD expressed as x = UΣV⊤, and
Σ′ = diag(1, 1,det(UV⊤)).

Lemma 2. The inverse image π−1
9D(Rg) = {SRg | S =

S⊤} satisfies that {xg | π9D(xg) = Rg} ⊂ π−1
9D(Rg).

Proof. To find a suitable π−1
9D, the most straightfor-

ward way is to only change the singular values Σg =
diag(λ0, λ1, λ2), where λ0, λ1, λ2 can be arbitrary scalars,
and recompose the xg = UΣgV

⊤.

However, we argue that this simple method will fail to
capture the entire set of {xg | π9D(xg) = Rg}, because
different U′ and V′ can yield the same rotation Rg . In fact,
Ug can be arbitrary if xg = UgΣgV

⊤
g and UgΣ

′
gV

⊤
g =

Rg . Assuming Rg is known, we can replace V⊤
g by Rg

and express xg in a different way: xg = UgΣg
1
Σ′

g
U−1

g Rg .

Notice that UgΣg
1
Σ′

g
U−1

g must be a symmetry matrix since
Ug is an orthogonal matrix. Therefore, {xg | π9D(xg) =
Rg} ⊆ π−1

9D(Rg) = {SRg | S = S⊤}.
Note that such xg ∈ π−1

9D(Rg) can’t ensure π9D(xg) =
Rg , because in the implementation of SVD, the order and
the sign of three singular values are constrained, which is
not taken into consideration. Therefore, {xg | π9D(xg) =
Rg} ≠ π−1

9D(Rg).

Then we need to solve

xgp = argmin
xg∈π−1

9D(Rg)

∥xg − x∥22 (17)

where x is the raw output of our network in ambient space
R3×3, x̂g is the next goal in representation manifold SO(3),
and xg is the variable to optimize in ambient space R3×3.
We can further transform the objective function as below:

∥xg − x∥22 = ∥SRg − x∥22 = ∥S− xR⊤
g ∥22 (18)

Now we can easily find when S equals to the symmetry
part of xR⊤

g , the target formula reaches minimum. There-
fore, the inverse projection admits a simple form xgp =
xR⊤

g +Rgx
⊤

2 Rg .

10D representation Recall the manifold mapping π10D :
R10 → S3, π10D(x) = min

q∈S3
q⊤A(x)q, in which

A(θ) =


θ1 θ2 θ3 θ4
θ2 θ5 θ6 θ7
θ3 θ6 θ8 θ9
θ4 θ7 θ9 θ10

 . (19)

We need to solve

xgp = argmin
A(xg)qg=λqg

∥xg − x∥22, (20)

where x is the raw output of our network in ambient space
R10, qg is the next goal in representation manifold S3, and
xg is the variable to optimize in ambient space R10. Note
that λ is also a variable to optimize. For the similar reason
as before, for the sake of simplicity and consistency of an-
alytical solution, here we also need to relax the constraint
that λ should be the smallest eigenvalue of A(xg).

To solve Eq. 19, we start from rewriting A(xg)qg =
λqg as

M∆x = λqg −A(x)qg, (21)



where ∆x = xg − x and

M =

q1 q2 q3 q4 0 0 0 0 0 0
0 q1 0 0 q2 q3 q4 0 0 0
0 0 q1 0 0 q2 0 q3 q4 0
0 0 0 q1 0 0 q2 0 q3 q4

 (22)

where qg = (q1, q2, q3, q4)
⊤. For simplicity, we denote

λqg −A(x)qg as b.
Once we have finished the above steps for preparation,

we solve λ and ∆x for the minimal problem by two steps
as below. First, we assume λ is known and the problem
becomes that given M and b, we need to find the best ∆x to
minimize ∥∆x∥22 with the constraint M∆x = b. This is a
typical quadratic optimization problem with linear equality
constraints, and the analytical solution satisfies(

I M⊤

M 0

) (
∆x
v

)
=

(
0
b

)
(23)

where v is a set of Lagrange multipliers which come out of

the solution alongside ∆x, and
(

I M⊤

M 0

)
is called KKT

matrix. Since this matrix has full rank almost everywhere,
we can multiple the inverse of this KKT matrix in both sides
of Eq. 23 and lead to the solution of ∆x as below:(

∆x
v

)
=

(
I M⊤

M 0

)−1 (
0
b

)
(24)

Recall that b = λqg − A(x)qg , therefore so far we have
had the solution of ∆x respect to each λ:

∆x =

(
∆x
v

)
0:10

= K(λqg −A(x)qg) = λS−T (25)

in which K is the upper right part of the inverse of the KKT

matrix K =

[(
I M⊤

M 0

)−1
]
10:14,0:10

, S = Kqg and

T = KA(x)qg .
Next, we need to optimize λ to minimize our objective

function ∥∆x∥22. In fact, using the results of Eq. 25, ∥∆x∥22
becomes a quadratic functions on λ, thus we can simply get
the final analytical solution of λ and xgp:{

λ = (S⊤T+T⊤S)
2S⊤S

xgp = x+ λS−T
(26)

Another thing worth mentioning here is that in this spe-
cial case, the representation manifold S3 is no longer a
subspace of the abmient space R10, which means that we
can’t directly compute our regularization term xgp−qg be-
cause xgp ∈ R10 while qg ∈ S3. However, the length
vanishing problem still exists as shown in Figure 3 of our
main paper. Therefore, to compute the regularization term,
we need a simple mapping to convert qg to an element

on R10 with stable length norm. We use the mapping
g : S3 → R10, g(q) = A−1(I − qq⊤), which is proposed
in [5]. They also proved that π(g(q)) = q is always true,
which makes g(q) better than simply normalizing xgp be-
cause the latter one will suffer from the problem of opposite
gradient discussed in Section 4.3 of our main paper.

3. Projective Manifold Gradient on S2

3.1. Riemannian Optimization on S2

Our methods can also be applied for the regression of
other manifolds. Taking S2 as an example, which is in-
cluded in Experiment 5.4 of our main paper, we will show
the detail of how our projective manifold gradient layer
works in other manifolds.

During forward, The network predicts a raw output x ∈
R3, which is then mapped to x̂ ∈ S2 through a manifold
mapping π(x) = x/∥x∥. Here we don’t define the rota-
tion mapping and representation mapping, and we directly
compute the loss function on representation manifold S2.

During backward, to apply a Riemannian optimization,
we first need to know some basic concepts of S2. The tan-
gent space of an arbitrary element x̂ ∈ S2 is Tx̂M, which
is a plane. And we can map a geodesic path v ∈ Tx̂M
to an element on the manifold S2 through expx̂(v) =
cos(∥v∥)x̂ + sin(∥v∥) v

∥v∥ , where ∥.∥ means the ordinal
Frobenius norm.

For the definition of the mapping ∧, which connects Eu-
clidean space R2 and the tangent space Tx̂M, we need to
first define two orthogonal axes ĉ1, ĉ2 in the tangent plane.
Note that the choice of ĉ1 and ĉ2 won’t influence the fi-
nal result, which will be shown soon after. To simplify the
derivation, we can assume ground truth unit vector x̂gt is
known and choose ĉ1 =

Logx̂(x̂gt)
∥Logx̂(x̂gt)∥ =

x̂gt−(x̂gt·x̂)
∥x̂gt−(x̂gt·x̂)∥ and

ĉ2 = x̂ × ĉ1. Then we can say ϕ∧ = ϕ1ĉ1 + ϕ2ĉ2, where
ϕ = (ϕ1, ϕ2) ∈ R2. The gradient of exponential mapping
with respect to ϕ is

∂

∂ϕ1
Expx̂(ϕ)

∣∣∣∣
ϕ=0

=
∂

∂ϕ1
(cos(∥ϕ1ĉ1∥)x̂+ sin(∥ϕ1ĉ1∥)

ϕ1ĉ1
∥ϕ1ĉ1∥

)

∣∣∣∣
ϕ=0

= ĉ1 (27)

Similarly, we have ∂
∂ϕ2

Expx̂(ϕ)
∣∣∣
ϕ=0

= ĉ2.

When using L2 loss, we can have

grad Lf(x̂) = (∇f(x̂))∧ = (∇ϕ)∧

=

(
∂f(x̂)

∂x̂

∂

∂ϕ
Expx̂(ϕ)

∣∣∣∣
ϕ=0

)∧

= ((2(x̂− x̂gt)ĉ1, 2(x̂− x̂gt)ĉ2))
∧

= 2((x̂ · x̂gt)x̂− x̂gt) (28)



Methods Accuracy(%) ↑ Med(◦) ↓
10◦ 15◦ 20◦ Err

Euler 60.2 80.9 90.6 8.3
Axis-Angle 45.0 70.9 85.1 11.0
Quaternion 34.3 60.8 73.5 13.2
6D 50.8 76.7 89.0 9.9
9D 52.4 79.6 90.3 9.2
9D-Inf 70.9 88.0 93.5 6.7
10D 50.2 77.0 89.6 9.8

RPMG-Quat 56.6 79.6 90.9 8.9
RPMG-6D 69.6 86.1 92.2 6.7
RPMG-9D 72.5 88.0 95.8 6.7
RPMG-10D 69.3 87.1 93.9 7.0
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Table 1. Pose estimation from PASCAL3D+ sofa images. Left: a comparison of methods by 10◦ / 15◦ / 20◦ accuracy of (geodesic) errors
and median errors after 60k training steps. Middle: median test error at different iterations during training. Right: test error percentiles
after training completes. The legend on the right applies to both plots.

Methods Accuracy(%) ↑ Med(◦) ↓
10◦ 15◦ 20◦ Err

Euler 28.2 48.1 62.7 15.7
Axis-Angle 5.3 8.1 10.1 79.7
Quaternion 20.8 38.8 54.6 18.7
6D 21.8 39.0 55.3 18.1
9D 20.6 37.6 56.9 18.0
9D-Inf 38.0 53.3 69.9 13.4
10D 23.9 42.3 56.7 17.9

RPMG-Quat 32.3 50.0 65.6 15.0
RPMG-6D 35.4 57.2 70.6 13.5
RPMG-9D 36.8 57.4 71.8 12.5
RPMG-10D 40.0 57.7 71.3 12.9
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Table 2. Pose estimation from PASCAL3D+ bicycle images. We report the same metrics as Table 1; see the caption there.

Note that this expression doesn’t depend on the choice of
ĉ1 and ĉ2.

Similar to Eq 12, we can also solve a τconverge

τconverge = lim
<x̂,x̂gt>→0

−
Logx̂(x̂gt)

grad Lf(x̂)
= lim

θ→0

θĉ1

2 sin θĉ1

=
1

2
(29)

where θ =< x̂, x̂gt >. Note that in Experiment 5.4, we
change the schedule of τ according to this conclusion. We
increase τ from 0.1 to 0.5 by uniform steps.

3.2. Inverse Projection

Similar to quaternion, we can have xgp = (x · x̂g)x̂g .
For the detail of derivation, see Section 2.2.

4. Computational Cost
Our method does not alter the forward pass and thus in-

curs no cost at test time. For backward pass at training, we
observe that, before and after inserting RMPG layers, the
backward time for quaternion / 6D / 9D / 10D represen-
tations, averaged among 1K iterations on a GeForce RTX
3090, changes from 4.39 / 4.48 / 4.48 / 4.53 to 4.45 / 4.43
/ 4.49 / 4.63 (unit: 10−2 s), and the memory cost changes
from 11449 / 11415 / 10781 / 11363 to 11457 / 11459 /
11545 / 11447 (unit: MiB). Note that the runtime is almost
keep the same, as Riemannian optimization only performs
an additional projection and we derive and always use an-
alytical solutions in representation mapping, inversion and

projection steps. RPMG also has a very marginal cost on
the memory, as it does not introduce any weights but only a
few intermediate variables.

5. More Experiments
5.1. Pascal3D+

Pascal3D+ [12] is a standard benchmark for object pose
estimation from real images. We follow the same setting as
in [4] to estimate object poses from single images. For train-
ing we discard occluded or truncated objects and augment
with rendered images from [8]. In the Table 1 and Table
2, we report our results on sofa and bicycle categories. We
use the same batch size as in [4]. As for the learning rate,
we use the same strategy as in Experiment 5.2 of our main
paper. See the discussion in Section 6.2.

It can be seen that our method leads to consistent im-
provements to quaternion, 6D, 9D and 10D representations
on both sofa and bicycle classes. One may be curious about
why our method can only outperform 9D-inf for a margin.
We think that this is because this dataset is quite challeng-
ing. The number of annotated real image for training is only
around 200 for each category. Though there are a lot of syn-
thetic images generated from [8] for training, these images
suffer from sim-to-real domain gap. Therefore, we argue
that the bottleneck here is not in optimization, which makes
the gains from less noise in gradient smaller(Note that 9D-



Methods King’s College Old Hospital Shop Facade St Mary’s Church Average

T(m) R(◦) T(m) R(◦) T(m) R(◦) T(m) R(◦) T(m) R(◦)

Euler 1.16 2.85 2.54 2.95 1.25 6.48 1.98 6.97 1.73 4.81
Axis-Angle 1.12 2.63 2.41 3.38 0.84 5.05 2.16 7.58 1.63 4.66
Quaternion 0.98 2.50 2.39 3.44 1.06 6.01 2.59 8.81 1.76 5.19
6D 1.10 2.56 2.21 3.43 1.01 5.43 1.73 5.82 1.51 4.31
9D 1.14 3.03 2.11 3.50 0.88 6.39 1.95 5.95 1.52 4.72
9D-Inf 0.98 2.32 1.89 3.32 1.15 6.36 1.96 6.25 1.50 4.56
10D 1.54 2.62 2.32 3.39 1.20 5.76 1.85 6.69 1.73 4.62

RPMG-Quat 1.04 1.91 2.42 2.72 0.98 4.28 1.82 4.89 1.57 3.45
RPMG-6D 1.55 1.70 2.62 3.09 0.95 5.01 2.44 5.18 1.89 3.75
RPMG-9D 1.57 1.82 4.37 3.12 0.93 4.17 1.92 4.69 2.20 3.45
RPMG-10D 1.30 1.74 3.21 2.59 1.10 3.47 2.20 5.09 1.95 3.22

Table 3. Camera relocalization on Cambridge Landscape dataset. We report the median error of translation and rotation of the best
checkpoint, which is chosen by minimizing the median of rotation. We only care about the rotation error here.

inf is just a special case of our methods with λ = 1 and
τ = τgt). But compared to vanilla 4D/6D/9D/10D repre-
sentation, our methods can still bring a great improvement.

5.2. Camera Relocalization

The task of camera relocalization is to estimate a 6
Degree-of-Freedom camera pose (rotation and translation)
from visual observations, which is a fundamental compo-
nent of many computer vision and robotic applications. In
this experiment, we use all the settings (data, network, train-
ing strategy, hyperparameters, etc.) of PoseLSTM [10] ex-
cept that we modify the rotation representations and the
gradient layers. We report the results on the outdoor Cam-
bridge Landscape dataset [3] in Table 3.

Notice that our RPMG layer performs the best on the ro-
tation regression task, but not on the translation regression.
We believe this results from a loss imbalance. We does not
change the weights of the rotation loss and translation loss,
otherwise it leads to an unfair comparison with existing re-
sults. We only care about the rotation error here.

5.3. Using Flow Loss for Rotation Estimation from
Point Clouds.

Apart from the most widely used L2 loss, our method
can also be applied to the loss of other forms, e.g. flow loss.

We mainly follow the setting in Experiment 5.1 of our
main paper with airplane point clouds dataset and the only
difference is that we use flow loss ∥RX − RgtX∥2F here,
where X is the complete point clouds.

Since the format of loss is changed, the previous sched-
ule of τ is not suitable anymore, and we have to change the
value of τ accordingly. Our selection skill is to first choose
a τ as we like and visualize the mean geodesic distance be-
tween predicted R and Rg during training. Then we can

roughly adjust τ to make the geodesic distance looked rea-
sonable. For this experiment, we use τ = 50 and λ = 0.01.
In Table 4, we show our methods again outperform vanilla
methods as well as 9D-inf.

Methods Mean (◦) Med (◦) 5◦Acc (%)

Euler 12.14 6.91 33.6
Axis-Angle 35.49 20.80 4.7
Quaternion 11.54 7.67 29.8
6D 14.13 9.41 23.4
9D 11.44 8.01 23.8
9D-Inf 4.07 3.28 76.7
10D 9.28 7.05 32.6

RPMG-Quat 4.86 3.25 75.8
RPMG-6D 2.71 2.04 92.1
RPMG-9D 3.75 2.10 91.1
RPMG-10D 3.30 2.70 86.8

Table 4. Flow Loss for Rotation Estimation from Point Clouds.
All models are trained for 30K iterations.

6. More Implementation Details
6.1. Experiment 5.1 & 5.3 & 5.4 of Main Paper

Data We generate the data from ModelNet dataset [11]
by sampling 1024 points on the mesh surface, following the
same generation method as in [13]. We uniformly sample
M rotations for each data point and set them as the ground
truth. We apply the sampled rotations on the canonical point
clouds to obtain the input data.

Network Architecture We use a PointNet++ MSG [6]
backbone as our feature extractor. Our network takes input
a point cloud with a resolution of 1024. It them performs
three set abstractions to lower the resolution to 512, 128,
and finally 1, resulting in a global feature of dimensionality
1024. The feature is finally pushed through a three-layer



MLP [1024, 512, N ] to regress rotation, where N is the di-
mension of the rotation representation.

Training details The learning rate is set to 1e-3 and de-
cayed by 0.7 every 3k iterations. The batch size is 20. For
each experiment, we train the network on one NVIDIA TI-
TAN Xp GPU for 30k iterations.

6.2. Experiment 5.2 of Main Paper

Most of the training settings and strategies are all the
same as [4] except learning rate. We find setting initial
learning rate lr = 1e − 3 and decaying to 1e − 5 can per-
form much better than using lr = 1e − 5 as in [4], which
accounts for the inconsistency of the results of those base-
line methods compared to [4]. We believe that the methods
should be compared under hyperparameters as optimal as
possible. Thus, we stick to our lr schedule.
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Table 5. Test Error Percentiles for Experiment 5.1&5.2 in our
main paper. Left: test error percentiles of airplane for Experi-
ment 5.1 after training completes. Right: test error percentiles of
chair for Experiment 5.2 after training completes.

7. Addition on Rotation Representations
Standard mapping between rotation matrix and unit
quaternion The rotation mapping ϕ : q 7→ R alge-
braically manipulates a unit quaternion q into a rotation ma-
trix:

ϕ(q) =

2(q20 + q21) − 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22) − 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23) − 1

 (30)

where q = (q0, q1, q2, q3) ∈ S3.
In the reverse direction, the representation mapping

ψ(R) can be expressed as:
q0 =

√
1 +R00 +R11 +R22/2

q1 = (R21−R12)/(4 ∗ q0)
q2 = (R02 −R20)/(4 ∗ q0)
q3 = (R10 −R01)/(4 ∗ q0)

(31)

Note that q = (q0, q1, q2, q3) and −q =
(−q0,−q1,−q2,−q3) both are the valid quaternions
parameterizing the same R.
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