Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving Supplementary Material

Yi-Nan Chen¹ Hang Dai^{2*} Yong Ding^{1*} ¹School of Micro-Nano Electronics, Zhejiang University ²Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE *Corresponding authors{hang.dai@mbzuai.ac.ae, dingy@vlsi.zju.edu.cn}.

Figure 1. An illustration of disparity-wise dynamic convolution with grid shifting. The top left corner point of $W \times H$ window (blue and red dot windows for disparity feature map and left feature map, respectively) shifts within the 3×3 grid (blue box). The outcome (virtual right feature map) of the overall operation with 9 times $W \times H$ window shifting in 3×3 grid is the same as that of the overall operation with $W \times H$ times 3×3 sliding window to cover the whole feature map.

1. Disparity-wise Dynamic Convolution with Grid Shifting

The process of disparity-wise dynamic convolution with grid shifting can formulated as:

$$\hat{F}'_{R} = \frac{1}{3 \times 3} \sum_{g_{i}, g_{j}} F_{L}^{\prime(g_{i}, g_{j})} \odot F_{D}^{(g_{i}, g_{j})}$$
(1)

where \hat{F}'_R is the generated virtual right feature map, F'_L indicates the left feature map and F_D is the disparity feature map. The (g_i, g_j) indicates the shifting direction and step size within the 3×3 grid $\{(g_i, g_j)\}$, where $g \in \{-1, 0, 1\}$.

Also, the Eqn. 1 can be expanded as follows:

$$\hat{F}'_{R} = \frac{1}{3 \times 3} (F'_{L}^{(-1,-1)} \odot F_{D}^{(-1,-1)} + F'_{L}^{(-1,0)} \odot F_{D}^{(-1,-1)} + F'_{L}^{(-1,1)} \odot F_{D}^{(-1,1)} + F'_{L}^{(0,-1)} \odot F_{D}^{(0,-1)} + F'_{L}^{(0,0)} \odot F_{D}^{(0,0)} + F'_{L}^{(0,0)} \odot F_{D}^{(0,0)} + F'_{L}^{(1,-1)} \odot F_{D}^{(1,-1)} + F'_{L}^{(1,0)} \odot F_{D}^{(1,0)} + F'_{L}^{(1,1)} \odot F_{D}^{(1,1)})$$
(2)

We illustrate the above process in Figure 1. The top left corner point of $W \times H$ window (blue and red dot windows for disparity feature map and left feature map, respectively) shifts within the 3×3 grid (blue box). The outcome (virtual right feature map) of the overall operation with 9 times W \times H window shifting in 3×3 grid is the same as that of the overall operation with W \times H times 3×3 sliding window to cover the whole feature map.

2. Right Feature Re-projection in Featureclone

In the main paper, we follow LIGA-stereo [3] to concatenate the left features F_L and the re-projected right features $F_{R->L}$ at all candidate depth levels for building the stereo volume V_{st} as follows:

$$V_{st}(u, v, w) = concat[F_L(u, v), F_{R->L}(u, v)] \quad (3)$$

$$F_{R->L}(u,v) = F_R(u - \frac{f \cdot b}{d(w) \cdot S}, v) \tag{4}$$

$$d(w) = w \cdot v_d + z_{min} \tag{5}$$

where (u, v) are the pixel coordinates, $w \in [0, 1, ...]$ indicates the depth index, S is the stride of the feature map, v_d is the depth interval, z_{min} indicates the minimal depth value, f is the camera focal length, and b represents the baseline of the stereo camera pair. In feature-clone virtual right view generation method, we duplicate the left features F_L as the right features \hat{F}_R and concatenate the left features F_L and re-projected right features $F_{R->L}$ as described in Eqn. 3.

Methods	Easy	AP_{3D}/AP_{BEV} Moderate	Hard
Ours-fcd w/ re-projection	28.46 / 37.66	19.15 / 25.78	16.56 / 22.47
Ours-fcd w/o re-projection	22.36/ 31.49	16.19 / 22.68	14.19/ 20.48

Table 1. Performance for *Car* on KITTI *val* set at IOU threshold 0.7. Compare the performance with and without re-projection. We report the results in $AP|_{R40}$.

To show the effectiveness of the right feature re-projection, we conduct an experiment using the the concatenation of the left features F_L and the virtual right features \hat{F}_R without re-projection as:

$$V_{st}^*(u, v, w) = concat[F_L(u, v), F_R(u, v)]$$
(6)

As shown in Table. 1, without re-projection, the performance of the proposed framework decreases significantly in AP_{3D} by (-6.1%, -2.96%, -2.37%) and AP_{BEV} by (-6.17%, -3.1%, -1.99%). This implies that the re-projection of right feature is effective in constructing the stereo volume for monocular 3D detection.

Eve	Mathada	r		AP_{3D}/AP_{BEV}		
Exp. Methods		L_{depth}	L_{kd}	Easy	Moderate	Hard
1	Image-level	~	✓	31.43 / 41.82	21.53 / 29.00	18.47 / 25.21
2	Image-level		 ✓ 	31.81 / 42.87	22.36 / 30.16	19.33 / 26.38
3	Image-level	\checkmark		29.10/39.61	20.12 / 27.60	17.07 / 23.16
4	Image-level			28.89 / 40.17	20.79 / 29.45	17.81 / 25.14
5	Feature-level	√	√	35.18 / 45.50	24.15 / 32.03	20.35 / 27.57
6	Feature-level		1	22.04 / 31.10	16.18 / 22.55	14.31 / 20.56
7	Feature-level	\checkmark		32.48 / 43.62	22.38 / 30.78	19.23 / 26.94
8	Feature-level			19.37 / 29.44	14.10/21.26	12.55 / 19.22
9	Feature-clone	✓	✓	28.46 / 37.66	19.15 / 25.78	16.56 / 22.47
10	Feature-clone		 ✓ 	24.33 / 32.99	17.09 / 23.77	14.61 / 20.81
11	Feature-clone	\checkmark		24.20 / 33.69	17.02 / 23.85	14.73 / 21.26
12	Feature-clone			19.69 / 28.96	14.56 / 21.32	12.94 / 19.04

Table 2. Ablation studies of three proposed Pseudo-Stereo variants, L_{depth} and L_{kd} at IOU threshold 0.7. Exp. is the experiment tag. We report the results in $AP|_{R40}$.

3. The Effect of Knowledge Distillation

Although LIGA-stereo has studied the effect of knowledge distillation in [3], we conduct an extra study of knowledge distillation for the proposed Pseudo-Stereo frameworks in supplementary material as shown in Table. 2. The proposed frameworks without the knowledge distillation still achieve decent performance on KITTI *val* set. As discussed and analyzed in the main paper, the depth loss is not effective for image-level generation. Knowledge distillation improves the detection performance, which is consistent with the study in LIGA-stereo [3]. This lies in the fact that knowledge distillation transfers the structural detection knowledge from LiDAR-based 3D detectors. Note that we focus on the analysis of depth-aware feature learning in the main paper and discuss the knowledge distillation that is

Methods	L_{disp}	Easy	AP_{3D}/AP_{BEV} Moderate	Hard
Pseudo-LiDAR [8]	-	- / 28.20	- / 18.50	- / 16.40
AM3D [6]	-	- / <u>32.23</u>	- / 21.09	- / 17.26
DDMP-3D [7]	-	28.12 / 31.14	20.39 / 23.12	16.34 / 19.45
M3D-RPN [1]	-	14.53 / 20.27	11.07 / 17.06	8.65 / 15.21
D4LCN [2]	-	22.32 / 26.97	16.20/21.71	12.30 / 18.22
YOLOMono3D [5]	-	21.66 / -	14.20 / -	11.07 / _
Ours + YOLOStereo3D [5] Ours + YOLOStereo3D [5]	√	33.74 / 44.95 17.79 / 28.01	21.56 / 28.04 11.20 / 17.63	<u>15.58</u> / 21.87 8.81 / 13.55

Table 3. Performance for *Car* on KITTI *val* set at IOU threshold 0.7. L_{disp} indicates disparity loss. The best results are **bold**, and the second best results are <u>underlined</u>. We report the results in $AP|_{R40}$.

not related to depth-aware feature learning in supplementary material.

4. YOLOStereo3D with Pseudo-Stereo Views

We apply the feature-level virtual view generation that is our best method to the stereo 3D detector YOLOStereo3D [5] for monocular 3D detection. Note that the YOLO is a general architecture for image-based detection tasks, and our method is effective with a general image-based detection architecture for detecting 3D objects from a single image.

Preliminaries of YOLOStereo3D. The network architecture of YOLOStereo3D [5] includes four components. (I) A ResNet-34 [4] with shared weights is used to extract the multi-scale features from the left-right image pair. (II) A multi-scale stereo matching and fusion module is used to fuse the left features and the right features. (III) Disparity estimation head, and (IV) 3D detection head.

Implementation Details. We only modify the component **I** and use our feature-level generation method to generate the multi-scale virtual right features to adapt YOLOStereo3D to monocular 3D detection. For training, the batch size is set to 8 and other hyper-parameters are set the same as YOLOStereo3D [5]. To show the effect of the disparity loss, we conduct two experiments with disparity loss and without disparity loss.

Results. As shown in Table. 3, The adaptation of YOLOStereo3D [5] to monocular 3D detection with our Pseudo-Stereo views achieves significant improvements against YOLOMono3D [5] that is the official monocular version of YOLOStereo3D [5]. Also, it achieves better performance in monocular 3D detection than other state-of-the-art monocular 3D detectors, such as Pseudo-LiDAR [8], AM3D [6], DDMP-3D [7], M3D-RPN [1] and D4LCN [2]. With the disparity loss that is originally assembled in YOLOStereo3D [5], the adaptation of YOLOStereo3D [5] to monocular 3D detection with our Pseudo-Stereo views achieves significant improvements, which lies in the depth-aware feature learning with the disparity guidance in the

Input	Output	Module Config	Channel	Size
I_L, \hat{I}_R	conv1	7×7 Conv, stride=2	64	$H/2 \times W/2$
conv1	conv2	BasicBlock \times 3, dilation=1, stride=1	64	$H/2 \times W/2$
conv2	conv3	BasicBlock \times 4, dilation=1, stride=2	128	$H/4 \times W/4$
conv3	conv4	BasicBlock \times 6, dilation=2, stride=1	128	$H/4 \times W/4$
conv4	conv5	BasicBlock \times 3, dilation=4, stride=1	128	$H/4 \times W/4$
conv5	spp1	AvgPool (64×64);1×1 Conv; Upsample 64×	32	$H/4 \times W/4$
conv5	spp2	AvgPool (32×32) ;1×1 Conv; Upsample 32×	32	$H/4 \times W/4$
conv5	spp3	AvgPool (16×16);1×1 Conv; Upsample 16×	32	$H/4 \times W/4$
conv5	spp4	AvgPool (8×8);1×1 Conv; Upsample 8×	32	$H/4 \times W/4$
<i>spp</i> 1-4, <i>conv</i> 3-5	spp	Concat	512	$H/4 \times W/4$
conv2	hres1	1×1 Conv	64	$H/2 \times W/2$
I_L, \hat{I}_R	hres2	1×1 Conv	32	$H \times W$
spp	up1	3×3 Conv; Upsample $2 \times$; Add <i>hres</i> 1; ReLU	64	$H/2 \times W/2$
up1	up2	3×3 Conv; Upsample $2 \times$; Add <i>hres</i> 2; ReLU	32	$H \times W$
up2	$F_{L/R}$	3×3 Conv $\times 2$	32, 32	$H \times W$
$F_{L/R}$	Vst	Build stereo volume(Eqn. 3), disparity downsample=1	64	$D/4 \times H/4 \times W/4$

Table 4. Architecture details of stereo image feature extraction with image-level generation.

Input	Output	Module Config	Channel	Size
I_L, D	conv1	7×7 Conv, stride=2	64	$H/2 \times W/2$
conv1	conv2	BasicBlock \times 3, dilation=1, stride=1	64	$H/2 \times W/2$
conv2	conv3	BasicBlock \times 4, dilation=1, stride=2	128	$H/4 \times W/4$
conv3	conv4	BasicBlock \times 6, dilation=2, stride=1	128	$H/4 \times W/4$
conv4	conv5	BasicBlock \times 3, dilation=4, stride=1	128	$H/4 \times W/4$
conv3	conv3'	DDC	128	$H/4 \times W/4$
conv4	conv4'	DDC	128	$H/4 \times W/4$
conv5	conv5'	DDC	128	$H/4 \times W/4$
conv5'	spp1	AvgPool (64×64);1×1 Conv; Upsample 64×	32	$H/4 \times W/4$
conv5'	spp2	AvgPool (32×32) ; 1 × 1 Conv; Upsample 32×	32	$H/4 \times W/4$
conv5'	spp3	AvgPool (16×16);1×1 Conv; Upsample 16×	32	$H/4 \times W/4$
conv5'	spp4	AvgPool (8×8);1×1 Conv; Upsample 8×	32	$H/4 \times W/4$
spp1-4, conv3'-5'	spp	Concat	512	$H/4 \times W/4$
spp	$F_{L/R}$	3×3 Conv $\times 2$	32, 32	$H/4 \times W/4$
$F_{L/R}$	Vst	Build stereo volume(Eqn. 3), disparity downsample=4	64	$D/4 \times H/4 \times W/4$

Table 5. Architecture details of stereo image feature extraction with *feature-level generation*.

Input	Output	Module Config	Channel	Size
I_L	conv1	7×7 Conv, stride=2	64	$H/2 \times W/2$
conv1	conv2	BasicBlock \times 3, dilation=1, stride=1	64	$H/2 \times W/2$
conv2	conv3	BasicBlock \times 4, dilation=1, stride=2	128	$H/4 \times W/4$
conv3	conv4	BasicBlock \times 6, dilation=2, stride=1	128	$H/4 \times W/4$
conv4	conv5	BasicBlock \times 3, dilation=4, stride=1	128	$H/4 \times W/4$
conv5	spp1	AvgPool (64×64);1×1 Conv; Upsample 64×	32	$H/4 \times W/4$
conv5	spp2	AvgPool (32×32);1×1 Conv; Upsample 32×	32	$H/4 \times W/4$
conv5	spp3	AvgPool (16×16);1×1 Conv; Upsample 16×	32	$H/4 \times W/4$
conv5	spp4	AvgPool (8×8);1×1 Conv; Upsample 8×	32	$H/4 \times W/4$
spp1-4, conv3-5	spp	Concat	512	$H/4 \times W/4$
spp	$F_{L/R}$	3×3 Conv $\times 2$; Clone	32, 32	$H/4 \times W/4$
$F_{L/R}$	V _{st}	Build stereo volume(Eqn. 3), disparity downsample=4	64	$D/4 \times H/4 \times W/4$

Table 6. Architecture details of stereo image feature extraction with *feature clone*.

overall loss function.

5. The architecture details of the proposed three methods

In the paper, we propose three novel methods to generate the virtual right view: (a) *image-level generation*, (b) *feature-level generation* and (c) *feature-clone*. We use LIGA-Stereo [3] as our base stereo 3D architecture and feed the Pseudo-Stereo views to LIGA-Stereo. We only modify the component of stereo image feature extraction in LIGA-Stereo [3] for monocular 3D detection. Table. 4 shows the architecture of stereo image feature extraction with *imagelevel generation*. Table. 5 shows the architecture of stereo image feature extraction with *feature-level generation*. Table. 6 the architecture of stereo image feature extraction with *feature-clone*.

References

- Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d region proposal network for object detection. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 9287–9296, 2019.
- [2] Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping Shi, Zhiwu Lu, and Ping Luo. Learning depth-guided convolutions for monocular 3d object detection. arXiv preprint arXiv:1912.04799, 2019.
- [3] Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Liga-stereo: Learning lidar geometry aware representations for stereo-based 3d detector. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3153–3163, 2021.
- [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings* of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [5] Yuxuan Liu, Lujia Wang, and Ming Liu. Yolostereo3d: A step back to 2d for efficient stereo 3d detection. *arXiv preprint arXiv:2103.09422*, 2021.
- [6] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli Ouyang, and Xin Fan. Accurate monocular 3d object detection via color-embedded 3d reconstruction for autonomous driving. In *Proceedings of the IEEE International Conference* on Computer Vision, pages 6851–6860, 2019.
- [7] Li Wang, Liang Du, Xiaoqing Ye, Yanwei Fu, Guodong Guo, Xiangyang Xue, Jianfeng Feng, and Li Zhang. Depthconditioned dynamic message propagation for monocular 3d object detection. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 454–463, 2021.
- [8] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 8445–8453, 2019.