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Figure 1. An illustration of disparity-wise dynamic convolution
with grid shifting. The top left corner point of W × H window
(blue and red dot windows for disparity feature map and left fea-
ture map, respectively) shifts within the 3 × 3 grid (blue box). The
outcome (virtual right feature map) of the overall operation with 9
times W × H window shifting in 3 × 3 grid is the same as that of
the overall operation with W × H times 3 × 3 sliding window to
cover the whole feature map.

1. Disparity-wise Dynamic Convolution with
Grid Shifting

The process of disparity-wise dynamic convolution with
grid shifting can formulated as:

F̂ ′
R = 1

3×3

∑
gi,gj

F
′(gi,gj)
L ⊙ F

(gi,gj)
D (1)

where F̂ ′
R is the generated virtual right feature map, F ′

L in-
dicates the left feature map and FD is the disparity feature
map. The (gi, gj) indicates the shifting direction and step
size within the 3× 3 grid {(gi, gj)}, where g ∈ {−1, 0, 1}.

Also, the Eqn. 1 can be expanded as follows:
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We illustrate the above process in Figure 1. The top left
corner point of W × H window (blue and red dot windows
for disparity feature map and left feature map, respectively)
shifts within the 3 × 3 grid (blue box). The outcome (virtual
right feature map) of the overall operation with 9 times W
× H window shifting in 3 × 3 grid is the same as that of the
overall operation with W × H times 3 × 3 sliding window
to cover the whole feature map.

2. Right Feature Re-projection in Feature-
clone

In the main paper, we follow LIGA-stereo [3] to concate-
nate the left features FL and the re-projected right features
FR−>L at all candidate depth levels for building the stereo
volume Vst as follows:

Vst(u, v, w) = concat[FL(u, v), FR−>L(u, v)] (3)
FR−>L(u, v) = FR(u− f ·b

d(w)·S , v) (4)

d(w) = w · vd + zmin (5)

where (u, v) are the pixel coordinates, w ∈ [0, 1, ...] indi-
cates the depth index, S is the stride of the feature map, vd is
the depth interval, zmin indicates the minimal depth value,
f is the camera focal length, and b represents the baseline
of the stereo camera pair. In feature-clone virtual right view
generation method, we duplicate the left features FL as the
right features F̂R and concatenate the left features FL and
re-projected right features FR−>L as described in Eqn. 3.



Methods
AP3D/APBEV

Easy Moderate Hard

Ours-fcd w/ re-projection 28.46 / 37.66 19.15 / 25.78 16.56 / 22.47
Ours-fcd w/o re-projection 22.36/ 31.49 16.19 / 22.68 14.19/ 20.48

Table 1. Performance for Car on KITTI val set at IOU threshold
0.7. Compare the performance with and without re-projection. We
report the results in AP |R40.

To show the effectiveness of the right feature re-projection,
we conduct an experiment using the the concatenation of
the left features FL and the virtual right features F̂R with-
out re-projection as:

V ∗
st(u, v, w) = concat[FL(u, v), F̂R(u, v)] (6)

As shown in Table. 1, without re-projection, the perfor-
mance of the proposed framework decreases significantly
in AP3D by (-6.1%, -2.96%, -2.37%) and APBEV by (-
6.17%, -3.1%, -1.99%). This implies that the re-projection
of right feature is effective in constructing the stereo volume
for monocular 3D detection.

Exp. Methods Ldepth Lkd
AP3D/APBEV

Easy Moderate Hard

1 Image-level ✓ ✓ 31.43 / 41.82 21.53 / 29.00 18.47 / 25.21
2 Image-level ✓ 31.81 / 42.87 22.36 / 30.16 19.33 / 26.38
3 Image-level ✓ 29.10 / 39.61 20.12 / 27.60 17.07 / 23.16
4 Image-level 28.89 / 40.17 20.79 / 29.45 17.81 / 25.14

5 Feature-level ✓ ✓ 35.18 / 45.50 24.15 / 32.03 20.35 / 27.57
6 Feature-level ✓ 22.04 / 31.10 16.18 / 22.55 14.31 / 20.56
7 Feature-level ✓ 32.48 / 43.62 22.38 / 30.78 19.23 / 26.94
8 Feature-level 19.37 / 29.44 14.10 / 21.26 12.55 / 19.22

9 Feature-clone ✓ ✓ 28.46 / 37.66 19.15 / 25.78 16.56 / 22.47
10 Feature-clone ✓ 24.33 / 32.99 17.09 / 23.77 14.61 / 20.81
11 Feature-clone ✓ 24.20 / 33.69 17.02 / 23.85 14.73 / 21.26
12 Feature-clone 19.69 / 28.96 14.56 / 21.32 12.94 / 19.04

Table 2. Ablation studies of three proposed Pseudo-Stereo vari-
ants, Ldepth and Lkd at IOU threshold 0.7. Exp. is the experiment
tag. We report the results in AP |R40.

3. The Effect of Knowledge Distillation
Although LIGA-stereo has studied the effect of knowl-

edge distillation in [3], we conduct an extra study of knowl-
edge distillation for the proposed Pseudo-Stereo frame-
works in supplementary material as shown in Table. 2. The
proposed frameworks without the knowledge distillation
still achieve decent performance on KITTI val set. As dis-
cussed and analyzed in the main paper, the depth loss is
not effective for image-level generation. Knowledge distil-
lation improves the detection performance, which is consis-
tent with the study in LIGA-stereo [3]. This lies in the fact
that knowledge distillation transfers the structural detection
knowledge from LiDAR-based 3D detectors. Note that we
focus on the analysis of depth-aware feature learning in the
main paper and discuss the knowledge distillation that is

Methods Ldisp
AP3D/APBEV

Easy Moderate Hard

Pseudo-LiDAR [8] – – / 28.20 – / 18.50 – / 16.40
AM3D [6] – – / 32.23 – / 21.09 – / 17.26
DDMP-3D [7] – 28.12 / 31.14 20.39 / 23.12 16.34 / 19.45
M3D-RPN [1] – 14.53 / 20.27 11.07 / 17.06 8.65 / 15.21
D4LCN [2] – 22.32 / 26.97 16.20 / 21.71 12.30 / 18.22
YOLOMono3D [5] – 21.66 / – 14.20 / – 11.07 / –

Ours + YOLOStereo3D [5] ✓ 33.74 / 44.95 21.56 / 28.04 15.58 / 21.87
Ours + YOLOStereo3D [5] 17.79 / 28.01 11.20 / 17.63 8.81 / 13.55

Table 3. Performance for Car on KITTI val set at IOU threshold
0.7. Ldisp indicates disparity loss. The best results are bold, and
the second best results are underlined. We report the results in
AP |R40.

not related to depth-aware feature learning in supplemen-
tary material.

4. YOLOStereo3D with Pseudo-Stereo Views
We apply the feature-level virtual view generation that is

our best method to the stereo 3D detector YOLOStereo3D
[5] for monocular 3D detection. Note that the YOLO is
a general architecture for image-based detection tasks, and
our method is effective with a general image-based detec-
tion architecture for detecting 3D objects from a single im-
age.

Preliminaries of YOLOStereo3D. The network archi-
tecture of YOLOStereo3D [5] includes four components.
(I) A ResNet-34 [4] with shared weights is used to extract
the multi-scale features from the left-right image pair. (II)
A multi-scale stereo matching and fusion module is used to
fuse the left features and the right features. (III) Disparity
estimation head, and (IV) 3D detection head.

Implementation Details. We only modify the com-
ponent I and use our feature-level generation method to
generate the multi-scale virtual right features to adapt
YOLOStereo3D to monocular 3D detection. For training,
the batch size is set to 8 and other hyper-parameters are set
the same as YOLOStereo3D [5]. To show the effect of the
disparity loss, we conduct two experiments with disparity
loss and without disparity loss.

Results. As shown in Table. 3, The adaptation of
YOLOStereo3D [5] to monocular 3D detection with our
Pseudo-Stereo views achieves significant improvements
against YOLOMono3D [5] that is the official monocular
version of YOLOStereo3D [5]. Also, it achieves better
performance in monocular 3D detection than other state-
of-the-art monocular 3D detectors, such as Pseudo-LiDAR
[8], AM3D [6], DDMP-3D [7], M3D-RPN [1] and D4LCN
[2]. With the disparity loss that is originally assembled in
YOLOStereo3D [5], the adaptation of YOLOStereo3D [5]
to monocular 3D detection with our Pseudo-Stereo views
achieves significant improvements, which lies in the depth-
aware feature learning with the disparity guidance in the



Input Output Module Config Channel Size

IL, ÎR conv1 7× 7 Conv, stride=2 64 H/2×W/2
conv1 conv2 BasicBlock × 3, dilation=1, stride=1 64 H/2×W/2
conv2 conv3 BasicBlock × 4, dilation=1, stride=2 128 H/4×W/4
conv3 conv4 BasicBlock × 6, dilation=2, stride=1 128 H/4×W/4
conv4 conv5 BasicBlock × 3, dilation=4, stride=1 128 H/4×W/4

conv5 spp1 AvgPool (64×64);1×1 Conv; Upsample 64× 32 H/4×W/4
conv5 spp2 AvgPool (32×32);1×1 Conv; Upsample 32× 32 H/4×W/4
conv5 spp3 AvgPool (16×16);1×1 Conv; Upsample 16× 32 H/4×W/4
conv5 spp4 AvgPool (8×8);1×1 Conv; Upsample 8× 32 H/4×W/4

spp1-4, conv3-5 spp Concat 512 H/4×W/4

conv2 hres1 1×1 Conv 64 H/2×W/2

IL, ÎR hres2 1×1 Conv 32 H ×W
spp up1 3×3 Conv; Upsample 2×; Add hres1; ReLU 64 H/2×W/2
up1 up2 3×3 Conv; Upsample 2×; Add hres2; ReLU 32 H ×W
up2 FL/R 3×3 Conv × 2 32, 32 H ×W

FL/R Vst Build stereo volume(Eqn. 3), disparity downsample=1 64 D/4×H/4×W/4

Table 4. Architecture details of stereo image feature extraction with image-level generation.

Input Output Module Config Channel Size
IL, D conv1 7× 7 Conv, stride=2 64 H/2×W/2
conv1 conv2 BasicBlock × 3, dilation=1, stride=1 64 H/2×W/2
conv2 conv3 BasicBlock × 4, dilation=1, stride=2 128 H/4×W/4
conv3 conv4 BasicBlock × 6, dilation=2, stride=1 128 H/4×W/4
conv4 conv5 BasicBlock × 3, dilation=4, stride=1 128 H/4×W/4

conv3 conv3′ DDC 128 H/4×W/4
conv4 conv4′ DDC 128 H/4×W/4
conv5 conv5′ DDC 128 H/4×W/4

conv5′ spp1 AvgPool (64×64);1×1 Conv; Upsample 64× 32 H/4×W/4
conv5′ spp2 AvgPool (32×32);1×1 Conv; Upsample 32× 32 H/4×W/4
conv5′ spp3 AvgPool (16×16);1×1 Conv; Upsample 16× 32 H/4×W/4
conv5′ spp4 AvgPool (8×8);1×1 Conv; Upsample 8× 32 H/4×W/4

spp1-4, conv3′-5′ spp Concat 512 H/4×W/4

spp FL/R 3×3 Conv × 2 32, 32 H/4×W/4

FL/R Vst Build stereo volume(Eqn. 3), disparity downsample=4 64 D/4×H/4×W/4

Table 5. Architecture details of stereo image feature extraction with feature-level generation.

Input Output Module Config Channel Size
IL conv1 7× 7 Conv, stride=2 64 H/2×W/2

conv1 conv2 BasicBlock × 3, dilation=1, stride=1 64 H/2×W/2
conv2 conv3 BasicBlock × 4, dilation=1, stride=2 128 H/4×W/4
conv3 conv4 BasicBlock × 6, dilation=2, stride=1 128 H/4×W/4
conv4 conv5 BasicBlock × 3, dilation=4, stride=1 128 H/4×W/4

conv5 spp1 AvgPool (64×64);1×1 Conv; Upsample 64× 32 H/4×W/4
conv5 spp2 AvgPool (32×32);1×1 Conv; Upsample 32× 32 H/4×W/4
conv5 spp3 AvgPool (16×16);1×1 Conv; Upsample 16× 32 H/4×W/4
conv5 spp4 AvgPool (8×8);1×1 Conv; Upsample 8× 32 H/4×W/4

spp1-4, conv3-5 spp Concat 512 H/4×W/4

spp FL/R 3×3 Conv × 2; Clone 32, 32 H/4×W/4

FL/R Vst Build stereo volume(Eqn. 3), disparity downsample=4 64 D/4×H/4×W/4

Table 6. Architecture details of stereo image feature extraction with feature clone.



overall loss function.

5. The architecture details of the proposed
three methods

In the paper, we propose three novel methods to gen-
erate the virtual right view: (a) image-level generation,
(b) feature-level generation and (c) feature-clone. We use
LIGA-Stereo [3] as our base stereo 3D architecture and feed
the Pseudo-Stereo views to LIGA-Stereo. We only modify
the component of stereo image feature extraction in LIGA-
Stereo [3] for monocular 3D detection. Table. 4 shows the
architecture of stereo image feature extraction with image-
level generation. Table. 5 shows the architecture of stereo
image feature extraction with feature-level generation. Ta-
ble. 6 the architecture of stereo image feature extraction
with feature-clone.
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