A1l. More Implementation Details

More details of Trojan attacks. (1) Attack configuration
for BadNets. We follow the attack methodology proposed
in [29] to inject a backdoor during training. It attaches a
trigger with a fixed size (5 x 5) and location (upper right
corner) to benign images and injects them into the training
set. Specifically, backdoored models are trained on a poi-
soned dataset with a poison ratio of 1% and the target label
is set to 0 throughout the experiment.

(2) Attack configuration for Clean Label Backdoor Attack
[94]. This method hinders the model from learning the true
salient characteristics of the input through perturbations,
often adversarial examples or data generated from GAN.
Thus, the learned representations of the images with a tar-
get label are distorted towards another class and the content-
label mismatch can be achieved in such a manner. In our
experiments, we choose the PGD attack [58] to generate
adversarial examples for the target class. For each image,
we perform a 10-step PGD attack on a robustly trained sur-
rogate ResNet-20s model with an attack budget ¢ = 8/255
and an attack learning rate of & = 2/255. The perturbed
images are then further attached with the colorful or black
trigger as aforementioned. We perturb all the images in the
target class to guarantee a successful attack.

For a recovered trigger (m, A), we evaluate the elly
norm of soft mask m, and then binarize this mask so that its
ell; norm equals the ground-truth value (5 x 5 for CIFAR-
10/100 and 64 x 64 for R-ImageNet). Then we stamp A
with the binary mask to the test images and calculate the
attack successful rate (ASR).

More details of reverse engineering. We use Neural
Cleanse [79] as our backbone to conduct trigger reverse en-
gineering. The detection includes two stages. In the first
stage, potential triggers with the possibly least norm to-
wards each class are obtained through a gradient-descent-
based optimization algorithm. The final synthetic trigger
and its target label are then determined through an anomaly
detector. In the meantime, early stopping is performed as a
trick to speed up the trigger recovery.

For trigger recovering, we default to use 100 noise im-
ages generated by Gaussian distribution A'(0,1). And we
also compare the quality of recovered triggers from 10 and
100 clean images in Table 3 as an ablation study.

Each time, we pruned 20% of the remaining parameters
with the lowest magnitude and then rewind the weight to
epoch 3 before retraining.

A2. More Experiment Results

In this section, we not only provide comprehensive ab-
lation studies including @ the fine-tuning steps for Trojan
ticket detection; @ the configurations of Trojan attacks such

as the trigger locations; ® LTH pruning ratios and com-
parisons with other pruning methods, but also offer @ vi-
sualizations of winning Trojan ticket’s sparse connectivi-
ties and loss landscape geometry; ® pruning dynamics of
models with the clean-label Trojan trigger; ® extra results
of stealthier and global triggers; @ extra results on more
datasets; ® extra results on un-poisoned datasets; @ failure
case analyses.

In addition, for the performance of recovered triggers,
we present extra results of oracle labels (i.e., the truth tar-
get class) together with other two sparse Trojan tickets: (¢)
H-Trojan ticket with high SA and ASR; (i¢) L-Trojan ticket
with low SA (standard testing accuracy) and ASR, as col-
lected in Table A4, A5, A6, and A7.

Ablation for the fine-tuning steps k. We explore the ef-
fect of the number of fine-tuning steps k. The successful
rate of detecting winning Trojan tickets is shown in Fig-
ure A7. It is calculated from ten replicates and each repli-
cate is fine-tuned for k steps. We find that choosing fine-
tuning steps k > 7 is potentially enough to accurately iden-
tify the winning Trojan tickets.
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Figure A7. The successful rate over fine-tuning steps of detecting
winning Trojan tickets. ResNet-20s on CIFAR-10 with RGB trig-
gers are adopted here.

Ablation on trigger locations. We study the different po-
sitions for placing Trojan triggers. As shown in Table A4,
winning Trojan ticket demonstrates a consistent superiority
in terms of recovered triggers’ ASR.

Ablation on pruning ratios. We investigate the pruning
ratio in LTH pruning [18]. Results of pruning ratio p =
10%, 20%, and 40% are presented in Figure A9, we observe
that p = 10% or 20% are capable of generating the winning
Trojan tickets, while p = 40% fails. A possible explanation
is that pruning with p = 40% is too aggressive to maintain
Trojan information.

Comparison with other pruning methods. In Fig-
ure A10, we compare LTH pruning [18] with other prun-
ing methods like random pruning (RP), one-shot magnitude
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Figure A8. Loss landscape geometry of dense Trojan models and their identified Trojan tickets from CIFAR-10/100, and ImageNet.

Table A4. Performance of recovered triggers with ResNet-20s on
CIFAR-10. The RGB Trojan attack is applied to different posi-
tions, including bottom left and upper right.

bottom left | (Detected, ¢1)  ASR | (Oracle, £1)  ASR
Dense baseline [32] (“57,121.9) X 10.5% | (“17,251.6) 13.7%
Winning Trojan ticket | (“1”,79.3) 86.7% | (“17,79.3) 86.7%
H-Trojan ticket (“47,104.8) X 21.3% | (“17,189.1) 14.2%
L-Trojan ticket (“27,158.6) X  18.7% | (“17,231.3) 42.1%
upper right | (Detected, 1)  ASR | (Oracle, ;)  ASR
Dense baseline [32] (“17,78.7) 48.0% (“17,78.7) 48.0%
Winning Trojan ticket | (“1”,29.8) 99.6% (“17,29.8) 99.6%
H-Trojan ticket “77,110.9) X 8.6% (“17,124.9) 18.3%
L-Trojan ticket (“27,105.00 X 58.5% | (“17,276.14) 17.1%
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Figure A9. Ablation on the pruning ratio of Trojan ticket find-
ings. The standard testing accuracy (SA %) and attack successful
rate (ASR %) are reported over network sparsity. ResNet-20s and
CIFAR-10 with RGB Trojan tickets are adopted here.

pruning (OMP), and SNIP [50]. We find that our propos-
als can be effective across different pruning methods. All
of LTH pruning, OMP, and SNIP produce winning Trojan
tickets. We also notice that random pruning can not make
it, which supports that appropriate sparsity plays a signifi-
cant role in capturing Trojan information.

Visualization of sparse masks and loss surfaces. We vi-
sualize the located winning Trojan ticket in Figure All,
and their loss landscape geometries in Figure A8. We find
that winning Trojan tickets usually have sharp local min-
ima, suggesting a potentially performance gap between be-
fore and after fine-tuning which lays the foundation of our
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Figure A10. Ablation on the pruning algorithms of Trojan ticket
findings, including RP, OMP, GraSP, SNIP and LTH-IMP (ours).
The standard testing accuracy (SA %) and attack successfully rate
(ASR %) are reported over network sparsity.

proposed detection methods.
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Figure All. Kernel-wise heatmap visualizations of the winning
Trojan ticket with 0.05% sparsity, 11.38% SA, and 94.49% ASR.
The bright blocks represent the completely pruned (zero) kernels
and the dark blocks stand for the kernels that have at least one
unpruned weight. B1 ~ 3 donate three residual blocks in the
ResNet-20s. CIFAR-10 with RGB triggers is used.

Pruning dynamic and Trojan scores of the clean-label
Trojan trigger. Figure A12 collects the pruning dynam-
ics and Trojan scores on CIFAR-10 dataset with ResNet-20s
and the clean-label Trojan trigger, where consistent conclu-
sions can be drown.

Extra results of stealthier and global triggers. We
conduct experiments on another advanced Trojan attack,
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Figure A12. The pruning dynamics and Trojan scores on CIFAR-
10 with ResNet-20s using the clean-label Trojan trigger. The peak
Trojan score precisely characterizes the winning Trojan ticket.

WaNet [62] which advocates stealthier and global triggers.
Results included in below table consistently justified the ef-
fectiveness of our approaches. Note that, to enable mean-
ingful comparison, we disable the additive Gaussian noise
in [62]; otherwise both dense baseline and winning Trojan
tickets are failed in reverse engineering.

Settings

(CIFAR-10, ResNet-20s)
with WaNet Backdoor

‘ Noise Images (‘Free’) ‘ (Detected, ¢1) ASR

Dense baseline (“17, 31.3) 40.1%
Winning Trojan ticket | (*17, 28.5) 96.71%

Extra results on more datasets. Extra experiments are
conducted on three more datasets, including MNIST [14],
GTSRB [41], and YouTubeFace [82]. Results in the table
below reveal similar conclusions as the ones in the main
text. For example, as a highly challenging scenario for trig-
ger recovery, the YouTubeFace contains 1283 classes and
the dense baseline method suffers from unsatisfactory re-
sults. However, our winning Trojan tickets still succeed in
restoring the trigger towards the right target label with a de-
cent ASR.

Settings ‘ Noise Images (‘Free’) ‘ (Detected, (1) ASR

(MNIST, ResNet-20s) Dense baseline (17, 34.0) 100%

with RGB Triggers Winning Trojan ticket (17, 36.4) 100%
(GTSRB, ResNet-20s) Dense baseline (“17,91.7) 54.02%
with RGB Triggers Winning Trojan ticket (“17,16.9) 98.89%
(YouTube Face, ResNet-20s) Dense baseline (“3347,612.9) X  6.23%
with RGB Triggers Winning Trojan ticket | (“1”, 659.3) 67.03%

Extra results on un-poisoned datasets. We conducted
Trojan detection experiments (in terms of Trojan trigger re-
covering) on a clean training set. It is shown from the fol-
lowing table that the use of winning Trojan ticket yields
similar norms of the recovered triggers across all labels.
This will not activate the Trojan detector, and thus, will not
flag non-Trojan datasets as the Trojan one. The detection
results that we achieved are consistent with [80].

Settings | Labelwtw O 1 2 3 4 5 6 71 8 9

254 107 123 126 233 169 187 260 265 207
436 292 476 379 300 303 301 240 392 259

Dense baseline
Winning Trojan ticket

Clean Training Set
(CIFAR-10, ResNet-20s)

Extra results of recovered triggers. We show additional
results of oracle labels (i.e., the truth target class) together
with other two sparse Trojan tickets: (z) H-Trojan ticket
with high SA and ASR; (z2) L-Trojan ticket with low SA
(standard testing accuracy) and ASR, as collected in Ta-
ble A5, A6, and A7.

Table AS. Performance of recovered triggers with the RGB Trojan
attack and ResNet-20s on CIFAR-10. Different number of clean
validation images are used for the reverse engineering.

Noise Images

(Detected, ¢1)  ASR | (Oracle, /1)  ASR

(17, 78.7) 48.0% | (“17,78.7)  48.0%
(“17, 29.8) 99.6% | (“17,29.8)  99.6%
77,1109 X 8.6% | (“17,124.9) 18.3%
(“27,105.0) X 58.5% | (“17,276.14) 17.1%

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

10 Clean Images

(Detected, /1)  ASR ‘ (Oracle, /1)  ASR

(“1”, 65.6) 77.2% | (“17,65.6) 77.2%
(“17,28.3) 99.7% | (“17,28.3)  99.7%
3, 171.4) X 10.5% | (“17,190.4) 38.2%
(“27,124.5) X 58.0% | (“17,275.2) 18.0%

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

100 Clean Images

(Detected, ¢1)  ASR ‘ (Oracle, ¢1)  ASR

(“17,174.6) /  72.6% | (“17,174.6) 72.6%
(17, 40.4) 99.8% | (“17,40.4)  99.8%
(“57,203.8) X 13.9% | (“17,211.5) 32.5%
(“27,220.7) X 56.7% | (“1”,326.1) 17.9%

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

Table A6. Performance of recovered triggers with ResNet-20s on
CIFAR-10 across diverse Trojan triggers. +/X mean the detected
target label is matched/unmatched with the truth target label.

| (Detected, /1)  ASR | (Oracle,;)  ASR

(“17,196.8) v/ 71.4% | (“17,196.8) 71.4%
(“17, 68.0) 91.2% | (“17,68.0) 91.2%
(37,2175 X 9.7% | (“17,294.1) 30.9%
77,797V X  52.1% | (“17,398.8) 13.7%

Gray-scale Trigger

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

RGB Trigger

(Detected, /1)  ASR

(“17,78.7) 48.0%
(17, 29.8) 99.6% | (“17,29.8)  99.6%
7, 110.9) X 8.6% | (“17,124.9) 18.3%
(“27,105.0) X 58.5% | (“17,276.1) 17.1%

(Oracle, /1)  ASR
(“17,78.7)  48.0%

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

Clean-label Trigger (Detected, /1)  ASR

(“17, 48.6) 9.6%
(“17,14.0) /  99.8% | (“17,14.0) 99.8%
(“17,21.0) /  28.3% | (“17,21.0) 28.3%
(“6,73.6) X 64.3% | (“17,158.2) 40.9%

(Oracle, /1)  ASR
(“17,48.6)  9.6%

Dense baseline [32]
Winning Trojan ticket
H-Trojan ticket
L-Trojan ticket

Failure case analyses of identifying winning Trojan tick-
ets on un-poisoned datasets. To comprehensively inves-
tigate the effectiveness of finding Trojan winning tickets on
un-poisoned datasets, we repeat the experiments with ten
different random seeds, and there are only 2 of 10 cases
where LMC identifies the wrong occurrence of ASR peaks.

Failure case analyses of identifying winning Trojan tick-
ets with clean-label attacks. Clean-label Trojan triggers
as one of the most challenging attacks may encounter some
failure cases during the detection of winning Trojan tickets.



Table A7. Performance of recovered triggers with RGB Trojan
attack across diverse (network architecture, dataset) combinations.

(ResNet-18, CIFAR-10) | (Detected, #1) ~ ASR | (Oracle, £1)  ASR

Dense baseline [32] (“37,77.5) X 13.0% | (“17,151.0) 10.9%
Winning Trojan ticket (“17,10.55) 81.8% | (“17,10.55) 81.8%
H-Trojan ticket (“17,8.15) 22.9% | (“17,8.15) 22.9%
Bad subnetwork (“107,135.2) X 11.5% | (“17,253.4) 15.6%
(DenseNet-100, CIFAR-10) ‘ (Detected, /1)  ASR ‘ (Oracle, £1)  ASR
Dense baseline [32] (“17,6.4) 13.7% (“17,6.4) 13.7%
Trojan tickets (“17,67.8) 66.9% | (“17,67.8) 66.9%
H-Trojan ticket (“17,10.0) 17.7% | (“17,10.0) 17.7%
L-Trojan ticket (“17,173.6) 8.5% | (“17,173.6) 8.5%

(VGG-16, CIFAR-10) | (Detected, {;) ~ ASR | (Oracle,#;) ~ ASR

Dense baseline [32] | (%17, 83.3) 33.6% | (“17,83.3) 33.6%
Winning Trojan ticket | (17, 15.0) 100.0% | (“17,15.0)  100.0%

H-Trojan ticket (“77,140.5) X 8.0% | (“1,171.7) 10.1%
L-Trojan ticket (“77,208.6) X 33.2% | (“17,602.4) 19.6%
(ResNet-20s, CIFAR-100) | (Detected, ¢;) ~ ASR | (Oracle, £1)  ASR
Dense baseline [32] (417, 149.9) 13.8 | (“17,149.9) 13.8
Winning Trojan ticket (“17,132.7) 98.7 | (*“17,132.7) 98.7
H-Trojan ticket (<17, 63.0) 83.3 | (“17,63.0) 83.3
L-Trojan ticket (“55”,233.1) X 3.4 | (“17,652.8) 10.2

(ResNet-18, R-ImageNet) | (Detected, /1) ASR | (Oracle, £1) ASR

Dense baseline [32] (“9”,13.9) X 9.8 | (“17,1179.00 97.7
Winning Trojan ticket (“17,193.1) 98.7 | (“17,193.1) 98.7
H-Trojan ticket (“77,22.6) X 4.7 (“17,556.1)  90.4
L-Trojan ticket (“57,142.3) X 99.6 | (“17,1043.3) 97.3

Specifically, we conduct ten replicates with diverse random
seeds, and there are 3 of 10 cases where LMC can not ac-
curately locate the winning Trojan ticket. One success and
one failure cases are collected in Figure A13.
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Figure A13. Success (Top) and failure (Bottom) cases of identify-
ing winning Trojan tickets with clean-label attacks on CIFAR-10
and ResNet-20s. Sufficient fine-tuning steps are conducted.



