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A. Training and Implementation Details

To have fair comparisons with all the baseline models,
we follow the same experimental setup as [1] for GQA-LT
and VG8K-LT evaluation and also the same setup as [10]
for VG200 evaluation. We train our model and all its ab-
lations with 8 V100 GPUs. The batch size is 8. We train
our models with 12, 8, and 7 epochs on GQA-LT, VG8K-
LT, and VG200 datasets, respectively. The hidden size of
h is 768. The number of Transformer heads is 12. Rela-
tional and global-context encoders both have 2 layers. The
memory size is 100 × 768. We use the Faster R-CNN [6]
with VGG-16 [7] backbone to extract the object proposal
features. We also apply the pretrained Word2Vec [5] em-
beddings to represent the relation and object labels.
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Figure 1. Average memory attention scores per each relation class
on evaluation of GQA-LT. The relation classes are ranked by its
frequency (from high to low)

B. Subject and Object Per-Class Accuracy

We also provide the per-class accuracy for subjects and
objects in Table 1. We can observe that our RelTransformer
can also easily outperform many baselines. Combining Rel-
Transformer with CE loss can outperform all the baseline
models on each category and it significantly improves over
the “many” category. Combining it with WCE can further-
more improve over “medium” and “tail” categories on both
datasets. These results demonstrate the effectiveness of our
model on the subject and object prediction. We also no-
tice that RelTransformer (WCE or DCPL) drops the perfor-
mance over “many” categories compared to CE loss func-
tion; We hypothesis that it is due to the assigned lower
weights on the high-frequent subjects/objects, and lower
weights will lead to the lower confidence values during the
classification. This phenomenon can explain why RelTans-
former (WCE) underperforms on the “many” classes and
why it underperforms on the compositional prediction for
“many” and “medium” classes.

C. Per-Example Accuracy

We provide the per-example accuracy for the subjects
and objects on GQA-LT dataset. It shows that RelTrans-
former (CE) achieves the best performance on predict-
ing subjects/objects and relations among all the baselines.
Per-example accuracy is mainly dominated by the “head”
classes since they are very large in example numbers. This
indicates that RelTransformer (CE) improves both head
and tail classes. Compared to the best baseline LSVRU
(CE), RelTransformer (CE) improves it by 10.6 acc on sub-
ject/object and 0.3 acc on relation predictions. However,
we could also notice that RelTransformer (WCE or DCPL)
brings the performance down on per-example accuracy, and
this phenomenon is also observed in LSVRU baselines. But
the results in Table 1(Supplementary) and Table 1 (main
paper) shows that RelTransformer (WCE or DCPL) has a
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VG8K-LT GQA-LT

Architecture Learning Methods many medium few all many medium few all
267 799 4,264 5,330 86 255 1,362 1,703

LSVRU VilHub [1] 61.6 20.3 10.1 14.2 68.6 44.0 10.3 18.3
LSVRU VilHub + RelMix [1] 59.5 15.1 10.4 13.6 68.8 42.1 10.1 18.1
LSVRU OLTR [4] 56.8 12.0 9.6 12.3 68.2 37.2 7.0 14.6
LSVRU EQL [8] 56.9 12.1 10.0 12.7 68.9 43.7 10.0 18.0
LSVRU Counterfactual♯ [9] 57.3 11.1 8.5 11.4 68.3 37.0 6.9 14.5

LSVRU CE 57.3 11.1 8.5 11.4 68.3 37.0 6.9 14.5
RelTransformer CE 67.1 25.9 11.5 16.5 78.0 56.6 14.2 23.8

LSVRU Focal Loss [3] 58.1 13.9 8.9 12.1 68.2 39.2 7.5 15.3
RelTransformer Focal Loss 65.6 21.7 10.8 15.2 75.0 51.4 11.9 21.0

LSVRU DCPL [2] 53.8 5.9 7.9 9.9 64.0 35.3 6.4 13.7
RelTransformer DCPL 50.3 30.9 13.4 17.8 51.8 44.6 19.2 24.7

LSVRU WCE 52.8 27.2 10.8 14.5 53.4 42.0 14.0 20.2
RelTransformer WCE 50.1 31.3 13.7 18.0 50.3 46.2 28.7 32.4

Table 1. Average per-class accuracy for subject/object. We separately evaluate the average per-class accuracy for many, medium, few, and
all categories. The best performance from each category is underlined. ♯ denotes our reproduction. Our model is denoted in gray

Per-example Accuracy
Architecture Learning Methods Subject/Object Relation

LSVRU CE 51.9 94.8
LSVRU VilHub [1] 53.9 91.2
LSVRU VilHub + RelMix [1] 53.5 91.0
LSVRU EQL [8] 51.1 93.9
LSVRU WCE 37.6 72.6
RelTransformer CE 62.5 95.1
RelTransformer Focal Loss [3] 59.4 95.0
RelTransformer DCPL [2] 34.3 80.5
RelTransformer WCE 34.2 74.2

Table 2. Per-example Accuracy on GQA-LT. The best performance from each category is underlined. Our model is denoted in gray

good-performing result on “medium” and “tail” categories.
This indicates that combining with class-imbalance loss
functions can benefit low-frequent class predictions with the
cost of the performance from a few number of top-frequent
classes; RelTransformer improves the results more general.

D. Memory Attention Further Analysis

To further investigate the role of memory attention, we
compute the memory attention scores, J − α in our fusion
function Eq. 1, for each testing example from well-trained
RelTransformer (WCE) on the GQA-LT dataset. We aver-
age the attention scores per each relation-class and demon-
strate them in Fig. 1. The relation classes are ranked ac-
cording to their frequency in the training data. We can ob-
serve a clear increasing trend for the attention scores from
high-frequent relations to low-frequent ones, meaning that

the features from memory can contribute to the long-tail re-
lations more than the head-relations, which can reflect why
memory can gain more improvement on the “medium” and
“tail” classes.

g(x, y) = α⊙ x+ (J − α)⊙ y

α = σ(W [x; y] + b)
(1)

where W is a 2D × D matrix. b is a bias term. [; ] denotes
the concatenation. ⊙ is the Hadamard product. J is an all-
one matrix with the same dimensions as α.

E. Additional Qualitative Examples
We show the relation prediction results on VG200

dataset in Fig. 2 and provide more long-tail relation pre-
diction results on GQA-LT and VG8K-LT dataset in Fig. 3
and 4.
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Figure 2. Qualitative results on VG200 dataset
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Figure 3. More long-tail relation prediction examples on GQA-LT dataset
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Figure 4. More long-tail relation prediction examples on VG8K-LT dataset
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