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Supplementary Material

This supplementary material provides more details that
are not presented in the main paper due to space limitations.
In the following sections, we first provide the proof of the
implicitly constructed discriminator D = ∥C∥∗ satisfying
the K-Lipschitz constraint. Then, we prove that the expected
target risk can be bounded by the expected and empirical
measures of the Nuclear-norm 1-Wasserstein discrepancy
(NWD) on the source and target domains. Finally, more im-
plementation details, experimental results, and insight analy-
sis are presented, including the detailed comparisons on the
VisDA-2017 dataset, the extra comparisons on the Domain-
Net [15] dataset, and analyses regarding toy experiments,
Proxy A-distance, self-correlation matrix, convergence, and
trade-off parameters (λ and γ).

A. K-Lipschitz constraint
To prove that the implicitly constructed discriminator

D = ∥C∥∗ satisfies the K-Lipschitz constraint, where the
classifier C consists of a fully connected layer Lc (·) and a
softmax function Sm (·), we first analyze Lc (·) and Sm (·),
respectively.

Definition 1. Given two metric spaces (M,dm) and (N, dn),
where dm denotes the metric on the compact set M ⊆ Rm

and dn is the metric on the compact set N ⊆ Rn, a function
h : M → N is called K-Lipschitz continuous if there exists
a real constant K ≥ 0 (the minimum K called Lipschitz
constant) such that, for ∀m1,m2 ∈ M , the following holds

∥h∥L = sup
m1 ̸=m2

dN (h (m1) , h (m2))

dM (m1,m2)
≤ K. (1)

Proposition 1. Given two metric spaces (F, |·|) and (O, |·|),
where F ⊆ Rd and O ⊆ Rk denote the compact in-
put feature set and output set, respectively, |·| denotes the
Frobenius norm in O or F . Then, for every input feature
f ∈ F , the Lipschitz constant K of the fully connected layer
Lc (f) = Wf + b, where Lc (·) : F → O maps the feature
f ∈ F to the output o ∈ O, W ∈ Rk×d denotes the weight
matrix, and b ∈ Rk denotes the bias vector, has a upper
bound ∥W∥F .

Proof. Given features f1, f2 ∈ F , if f1 = f2, we have
|h (f1)− h (f2)| = K |f1 − f2| = 0, and if f1 ̸= f2, we
have

|Lc (f1)− Lc (f2)| = |(Wf1 + b)− (Wf2 + b)|
= |W (f1 − f2)| .

Meanwhile, the spectral norm of the matrix W induced by
|f | is defined as

∥W∥2 = max
f ̸=0

|Wf |
|f |

= σmax,

where σmax is the maximum singular value obtained by sin-
gular value decomposition (SVD) on the matrix W . There-
fore, according to Definition 1, the Lipschitz constant K is
∥W∥2. Additionally, the Frobenius norm of the matrix W is
defined as

∥W∥F =

√√√√ k∑
i=1

d∑
j=1

W 2
i,j =

√√√√ r∑
i=1

σ2
i ,

where r = min {k, d}, σi denotes the i-th singular value.
Thus, for every f1, f2 ∈ F , we have

|Lc (f1)− Lc (f2)| = |W (f1 − f2)|
⩽ ∥W∥2 |f1 − f2|
= K |f1 − f2|
⩽ ∥W∥F |f1 − f2| .

According to Proposition 1, ∥W∥F can be an upper
bound of the Lipschitz constant K. As a widely used strat-
egy, the weight decay (implemented with Frobenius norm
regularization), which improves the generalization perfor-
mance of a DNN model through minimizing an additional
term λ0 ∥W∥2F (where λ0 is a trade-off parameter), can si-
multaneously enforce the fully connected layer to satisfy the
K-Lipschitz constraint.

Definition 2. (Remark 4.6.10 in [19]) Given a function
h : M → N , where M and N denote the compact subsets
of Rm and Rn, h will satisfy K-Lipschitz continuous if there
exists a real constant K ≥ 0 (the minimum K called Lips-
chitz constant), such that, for any m1,m2 ∈ M , m1 ̸= m2,
all the first partial derivatives are bounded by K.

Proposition 2. Given the compact output set O ⊆ Rk and
prediction set P ⊆ Rk, the softmax function Sm (·) : O →
P mapping the output o ∈ O to the prediction p ∈ P satisfies
the 1-Lipschitz constraint.

Proof. Let p = Sm (o), where pi is in the range from 0 to 1,



for ∀i ∈ 1 . . . k, then, we have

pi =
eoi∑k
j=1 e

oj
∀i ∈ 1 . . . k

k∑
i=1

pi = 1 ∀i ∈ 1 . . . k.

For simplicity, we denote
∑k

j=1 e
oj as Σ. Then, the Jacobian

matrix can be written as

J =


∂p1

∂o1
· · · ∂p1

∂ok
...

. . .
...

∂pk

∂o1
· · · ∂pk

∂ok

 .

According to the quotient rule, when i = j, we have

∂pi
∂oj

=
eoiΣ− eojeoi

Σ2

=
eoi

Σ
· Σ− eoj

Σ
= pi (1− pj) .

When i ̸= j, we have

∂pi
∂oj

=
0− eojeoi

Σ2

= −eoi

Σ
· e

oj

Σ
= −pipj .

Therefore, we have

Ji,j =

{
pi (1− pj) i = j
−pipj i ̸= j.

Therefore, given pi in the range from 0 to 1, Ji,j can be
bounded by 1. Thus, according to Definition 2, softmax
function satisfies the 1-Lipschitz constraint.

B. Generalization Bound
In this section, we first provide the proof for Lemma 1

and Theorem 1. Then, based on Theorem 1, we prove that
the expected target risk can be bounded by the expected
and empirical measures of NWD on the source and target
domains.

Lemma 1. (Lemma 1 of [16]; Lemma1 of [18]) Let νs, νt ∈
P (F) denote the probability measures of the source and
target domain features, ρ (fs, f t) be the cost of transporting
a unit of material from location fs satisfying fs ∼ νs to
location f t satisfying f t ∼ νt, W1 (νs, νt) represent the
NWD, and K denote a Lipschitz constant. Given a family of
classifiers C ∈ H1 and a ideal classifier C∗ ∈ H1 satisfying
the K-Lipschitz constraint, where H1 is a subspace of H, the
following holds for every C,C∗ ∈ H1.

|εs (C,C∗)− εt (C,C
∗)| ⩽ 2KW1 (νs, νt) . (2)

Proof. For every C,C∗ ∈ H1 satisfying the K-Lipschitz
constraint, according to the triangle inequality, we have

|C (fs)− C∗ (fs)| ⩽
∣∣C (fs)− C

(
f t
)∣∣

+
∣∣C (

f t
)
− C∗ (fs)

∣∣
⩽
∣∣C (fs)− C

(
f t
)∣∣

+
∣∣C (

f t
)
− C∗ (f t

)∣∣
+
∣∣C∗ (fs)− C∗ (f t

)∣∣ .
Therefore, for every f1, f2 ∈ F , the following holds,

||C (fs)− C∗ (fs)| − |C (f t)− C∗ (f t)||
ρ (fs, f t)

⩽ 2K.

For simplicity, we denote the discrepancy term
|εs (C,C∗)− εt (C,C

∗)| as dis. Thus, given f1, f2 ∈ F ,
and C ′ denotes the labeling function C ′ : F → [0, 1], for
every C,C∗ ∈ H1, we have

dis = Eνt

[∣∣C (
f t
)
− C∗ (f t

)∣∣]− Eνs [|C (fs)− C∗ (fs)|]
⩽ sup

∥C′∥L⩽K

Eνs [C
′ (fs)]− Eνt

[
C ′ (f t

)]
= 2KW1 (νs, νt) .

Theorem 1. Based on Lemma 1, for every C ∈ H1, the
following holds

εt (C) ⩽ εs (C) + 2KW1 (νs, νt) + η∗, (3)

where η∗ = εs (C
∗) + εt (C

∗) is the risk of ideal joint
hypothesis, which is a sufficiently small constant.

Proof. Based on Lemma 1, we have

εt (C) ⩽ εt (C
∗) + εt (C

∗, C)

= εt (C
∗) + εs (C,C

∗) + εt (C
∗, C)− εs (C,C

∗)

= εt (C
∗) + εs (C,C

∗) + εt (C,C
∗)− εs (C,C

∗)

⩽ εt (C
∗) + εs (C,C

∗) + 2KW1 (νs, νt)

⩽ εt (C
∗) + εs (C) + εs (C

∗) + 2KW1 (νs, νt)

= εs (C) + 2KW1 (νs, νt) + η∗.

Therefore, the expected target risk can be bounded by the
expected measures of the NWD on the source and target do-
main distributions. Furthermore, we show the convergence
of the empirical measures to the expected measures of the
NWD on the source and target domain samples.

Definition 3. Given p ⩾ 1 and η > 0, a probability measure
ν on F satisfies Tp (η) if the inequality

W (ν′, ν) ⩽

√
2

η
H (ν′|ν), (4)



where

H (ν′|ν) =
∫

dν′

dν
log

dν′

dν
dν, (5)

holds for any probability measure ν′.

Lemma 2. (Theorem 2.1 of [1]; Theorem 1 of [16]; Theorem
2 of [18]) Let ν ∈ P (F) be a probability measure in repre-
sentation space F , where F is a subspace of Rd, satisfying
T1 (η

∗) inequality. Let ν̂ = 1
N

∑N
i=1 δfi be its associated

empirical measure defined on a sample set {fi}Ni=1 of size
N drawn i.i.d from ν. Then for any d′ > d and η′ < η∗,
there exists some constant N0 depending on d′ and some
square exponential moment of ν such that for any ϵ > 0 and
N ⩾ N0 max

(
ϵ−(d+2), 1

)
, the following holds

P [W1 (ν, ν̂) > ϵ] ⩽ exp

(
−η′

2
Nϵ2

)
, (6)

where d′, η′ can be calculated explicitly.

Theorem 2. (Theorem 3 of [16]; Theorem 3 of [18]) Un-
der the assumption of Lemma 1 and Lemma 2, let two
probability measures νs, νt ∈ P (F) of the source and
target domain features satisfy the T1 (η

∗) inequality, Fs

and Ft be two sample sets of size Ns and Nt drawn i.i.d
from νs and νt, respectively. Let ν̂s = 1

Ns

∑Ns

i=1 δfs
i

and

ν̂t = 1
Nt

∑Nt

i=1 δft
i

be the associated empirical measures.
Then for any d′ > d and η′ < η∗, there exists some con-
stant N0 depending on d′ such that for any δ > 0 and
min (Ns, Nt) ⩾ N0 max

(
δ−(d′+2), 1

)
with probability at

least 1− δ for all C, the following holds

εt (C) ⩽εs (C) + 2KW1 (ν̂s, ν̂t) + η∗

+ 2K

√
2 log

(
1

δ

)/
η′
(√

1

Ns
+

√
1

Nt

)
,

(7)

where η∗ = εs (C
∗)+εt (C

∗) is a sufficiently small constant
representing the ideal combined risk.

Proof. Based on Lemma 1 and Lemma 2, we have

εt (C) ⩽εs (C) + 2KW1 (νs, νt) + η∗

⩽εs (C) + 2KW1 (νs, ν̂s) + 2KW1 (ν̂s, νt) + η∗

⩽εs (C) + 2KW1 (ν̂s, ν̂t) + 2KW1 (ν̂t, νt) + η∗

+ 2K

√
2 log

(
1

δ

)/
Nsη′

⩽εs (C) + 2KW1 (ν̂s, ν̂t) + η∗

+ 2K

√
2 log

(
1

δ

)/
η′
(√

1

Ns
+

√
1

Nt

)
.

C. Implementation details
The proposed method is implemented based on the Py-

Torch framework running on a GPU (Tesla-V100 32 GB).
Following the existing methods [6, 13], the ResNet50 or
ResNet101 pretrained on the ImageNet is used as the feature
extractor G, in which we use the bottleneck layer used in [8]
to replace the last fully connected layer. Classifier C is a
fully connected layer depending on the specific task . The
setting of the gradient reverse layer follows that of [6]. The
SGD optimizer is used to train the model with a moment
of 0.9, a weight decay of 1e-3, a batch size of 36, and a
cropped image size of 224×224. The initial learning rate of
classifier C is set to 5e-3, which is 10 times larger than that
of the feature extractor G. Additionally, to facilitate model
training, we use the annealing strategy [5] for the decay of
the learning rate. One can refer to our provided code for
more implementation details.

D. Detailed results on VisDA-2017
The detailed results on VisDA-2017 are shown in Table 1.

The proposed DALN achieves an average accuracy of 80.6
%, outperforming the existing SOTA methods. Combining
the proposed NWD with other methods, the performances of
these methods are substantially improved by 22.6%, 7.5%,
5.2%, and 4.9% for the DANN, CDAN, MDD, and MCC,
respectively. In particular, the improvements are evidently
exhibited on categories including bus, car, person, and truck.
These results come from the proposed NWD helping these
methods distinguish some confusing class pairs such as bus
and car, and train and truck.

E. Extra experiments on DomainNet
We further conduct an experiment on DomainNet [15]

(containing 0.6 million images, 345 categories, and 6 sub-
domains), which consists of 30 sub-experiments. And the
batch size is 64 for DomainNet. As the results shown in
Table 2, DALN outperforms the previous SOTA methods
impressively in terms of the average accuracy. Such en-
couraging results demonstrate the superiority of DALN for
processing complex datasets.

F. Insight Analysis
Toy examples. We perform toy experiments to discuss the
inter twinning moons 2D problem [14], helping analyze the
learned decision boundary. The presented examples consider
two cases. One case is generating balanced samples for
both the source and target domains, and the other studies
the class imbalance problem by reducing the samples of one
class in the target domain. Specifically, for the first case, we
generate 300 samples for two classes of the source samples
labeled 0 and 1, and each class has 150 samples. As shown



Table 1. Classification accuracy (%) on VisDA-2017 for unsupervised domain adaptation (using ResNet-101 as the backbone). † denotes
that the results are reproduced using the publicly released code. The best accuracy is indicated in bold red and the second best accuracy is
indicated in undelined blue.

Method plane bcycl bus car horse knife mcycl person plan sktbrd train truck Avg
ResNet-101 [7] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
WDGRL† [18] 85.4 54.2 76.2 41.4 68.9 56.8 86.9 48.2 57.2 51.9 81.8 27.2 61.3
MCD [17] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
BSP [2] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [9] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
BNM [3] 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
GVB-GD† [4] 90.1 68.7 81.9 61.7 91.2 67.3 90.2 76.5 90.2 77.8 90.3 41.0 77.2
DADA [20] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
TSA [11] - - - - - - - - - - - - 78.6
SCDA† [12] 93.1 84.6 78.2 52.2 90.8 95.2 81.0 77.2 91.1 80.5 89.1 43.5 79.7
DALN(Ours) 96.0 86.3 74.3 50.0 92.4 94.7 83.5 76.4 91.0 87.2 88.4 47.4 80.6
DANN [6] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DANN+NWD 96.0 73.6 84.3 48.3 88.0 92.8 89.4 78.2 89.1 90.9 88.7 40.3 80.0
CDAN [13] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+NWD 94.8 80.0 84.2 56.0 92.3 91.5 90.1 78.7 88.0 91.1 88.9 41.4 81.4
MDD† [21] 80.1 61.3 83.7 51.8 90.7 83.8 89.7 77.3 90.2 86.6 82.2 44.5 76.8
MDD+NWD 94.0 81.0 86.2 63.5 90.5 97.0 87.5 76.3 88.6 86.5 85.2 48.2 82.0
MCC [8] 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
MCC+NWD 96.1 82.7 76.8 71.4 92.5 96.8 88.2 81.3 92.2 88.7 84.1 53.7 83.7

(a) Normal: Source only (b) Normal: DANN (c) Normal: MDD (d) Normal: DALN

(e) Sparse: Source only (f) Sparse: DANN (g) Sparse: MDD (h) Sparse: DALN

Figure 1. Comparisons of decision boundaries on a toy example dataset. Red points and green points denote classes 0 and 1 of source data,
respectively. Blue points are target data generated by rotating the source data distribution by 30 degrees. In the second row, we reduce the
number of samples to 1/4 for the upper moon of the target domain via a sampling strategy, which thus generates imbalanced class samples.
The orange and green regions are classified as classes 0 and 1 by the final decision boundary, respectively.

in Fig. 1, samples corresponding to 0 are denoted by an
upper moon, while samples corresponding to 1 are denoted
by a lower moon. Then, the target samples are generated
by rotating the data distribution of the source samples by 30
degrees, resulting in a domain shift for the target domain.
In this case, the number of samples of each class in the
two domains are equal. In contrast, for the second case,
we reduce the number of samples to 38 for the upper moon

of the target domain via a sampling strategy, which thus
generates imbalanced class samples. As shown in Fig. 1, for
the first case, the model trained on the source-only data can
correctly classify the source samples, but cannot perform
properly in the overall target samples. DANN improves the
decision boundary, but some samples in the upper moon
are misclassified. MDD and DALN successfully classify
both the source and target samples, but the proposed DALN



achieves better classification performances compared with
MDD. For the second case, except our DALN, both the
DANN and MDD cannot learn a favorable decision boundary
for the target samples. Some samples in the upper moon and
lower moon are misclassified.

Table 2. Accuracy(%) on DomainNet for UDA. In each sub-table,
the column-wise domains are selected as the source domain and
the row-wise domains are selected as the target domain.

ResNet-101 [7] clp inf pnt qdr rel skt Avg. SCDA(21) [12] clp inf pnt qdr rel skt Avg.
clp - 19.3 37.5 11.1 52.2 41.0 32.2 clp - 18.6 39.3 5.1 55.0 44.1 32.4
inf 30.2 - 31.2 3.6 44.0 27.9 27.4 inf 29.6 - 34.0 1.4 46.3 25.4 27.3
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8 pnt 44.1 19.0 - 2.6 56.2 42.0 32.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3 qdr 30.0 4.9 15.0 - 25.4 19.8 19.0
rel 48.4 22.2 49.4 6.4 - 38.8 33.0 rel 54.0 22.5 51.9 2.3 - 42.5 34.6
skt 46.9 15.4 37.0 10.9 47.0 - 31.4 skt 55.6 18.5 44.7 6.4 53.2 - 35.7

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 42.6 16.7 37.0 3.6 47.2 34.8 30.3
BCDM(21) [10] clp inf pnt qdr rel skt Avg. DALN(Ours) clp inf pnt qdr rel skt Avg.

clp - 19.9 38.5 15.1 53.2 43.9 34.1 clp - 20.0 40.2 11.4 57.5 45.4 34.9
inf 31.9 - 32.7 6.9 44.7 28.5 28.9 inf 35.2 - 34.7 4.7 47.9 29.0 30.3
pnt 42.5 19.8 - 7.9 54.5 38.5 32.6 pnt 45.3 19.2 - 3.2 57.4 40.0 33.0
qdr 23.0 4.0 9.5 - 16.9 16.2 13.9 qdr 27.5 4.2 13.2 - 21.8 16.6 16.7
rel 51.9 24.9 51.2 8.7 - 40.6 35.5 rel 55.6 22.8 54.0 5.1 - 40.4 35.6
skt 53.7 20.5 46.0 13.1 53.4 - 37.1 skt 59.0 19.9 46.0 8.3 56.3 - 37.9

Avg. 40.6 17.8 35.6 10.3 44.3 33.5 30.4 Avg. 44.5 17.2 37.6 6.5 48.2 34.3 31.4

Proxy A-distance. As shown in Fig. 2, we calculate the
proxy A-distance of the feature representations achieved by
different methods based on task A→W of Office-31. Note
that a smaller proxy A-distance denotes better transferability.
The proposed DALN achieves the lowest proxy A-distance,
demonstrating its superiority in learning transferable fea-
tures. Moreover, by taking the NWD as a regularizer for
DANN and MDD, their proxy A-distances are considerably
decreased, demonstrating the effectiveness of the proposed
NWD in improving the transferability of the features.

Source only DALN DANN DANN+NWD MDD MDD+NWD

A W
0.0

0.5

1.0

1.5

2.0

-D
is

ta
nc

e

1.97

1.46

1.87

1.38

1.81
1.67

Figure 2. Visualization of the proxy A-distance on task A→W
of Office-31. Note that a smaller proxy A-distance denotes better
transferability.

Self-correlation matrix. As shown in Fig. 3, the model
trained on the source-only data generates large values on
the off-diagonal elements for the target domain samples. In
contrast, with the adaptation of the proposed paradigm, the
values of the self-correlation matrix generated from the tar-
get samples are highly concentrated on the main diagonal as
shown in Fig. 3(b). Thus, the intra-class correlation Ia is in-
creased and the inter-class correlation Ie is decreased, which
demonstrates the effectiveness of the proposed method.
Convergence. We present the convergence curves of the test
accuracy, NWD, and MMD with respect to the number of
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Figure 3. The self-correlation matrices of the predictions on the
target domain on task A→W of Office-31. (Zoom in for a clear
visualization.)

iterations on tasks A→W and W→A of Office-31, as shown
in Fig. 4. Benefiting from the definite guidance meaning,
DALN achieves rapid convergence with competitive accu-
racy. In particular, it can be observed that minimizing the
NWD can also effectively decrease the widely-used maxi-
mum mean discrepancy (MMD), which also demonstrates
the effectiveness of the NWD.
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Figure 4. The test accuracy, NWD and MMD convergence curves
of the target domain on tasks A→W and W→A of Office-31.
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Figure 5. The influence of λ and γ on tasks A→W and W→A of
Office-31.

Discussion of trade-off parameters λ and γ. λ is used to
balance the losses Lcls and Lnwd. γ is also a balance weight
used for taking the proposed NWD as a regularizer. Here, we
conduct influence analysis for these two parameters based
on tasks A→W and W→A of Office-31. As shown in Fig. 5,
DALN achieves the best performance when λ ranges from
0.75 to 1.25. For the parameter γ, pleasing results occur
when γ is in the range of 0.005 to 0.01. Similar trends can
also be observed in other datasets. For simplicity, in this
work, we set λ to 1 and γ to 0.01 for all the experiments.



G. Limitations
Despite the simplicity and the impressive performance of

our method, here comes two problems in the training process.
One problem is that the SVD process takes some time to
compute the Nuclear norm, and the other problem is that
the performance always reaches the highest value early in
the training process and then decreases slowly. These two
problems will be explored in our future work.
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