
Supplementary Material

A. Multi-Head Self-Attention
We briefly introduce self-attention then extend it to the

multi-head version. Recall that {x(i)
l }Mi=1 ∈ RM×dl denotes

the sequence of visual token extracted from a L× L patch,
where M is the sequence length and dl is the embedding
dimension extracted for l-sized tokens. For simplicity, we
ignore the the subscript l and lower the superscript i to the
subscript. The sequence of visual token is re-written as S =
{xi}Mi=1 ∈ RM×dl

To perform self-attention, we add three matrices
W q ,W k and W v ∈ Rdl×dl used to compute the relation-
ship between the token itself xi and other tokens xj in S.
Specifically,

qi = W qxi,ki = W kxi,vi = W vxi

wij = softmax(
q⊺
i kj√
dl

)

oi =
∑
j

wijvj ,

where qi, ki and vi are query, key and value vector of in-
put token xi. Intuitively, each visual token xi computes a
similarity score with other tokens and use the normalized
similarity score to perform weighted-sum of value vectors
of other tokens. The query, key and value vector space
are captured by W q ,W k and W v learned from data. To
increase the feature expressiveness, we increase the num-
ber of matrices from 1 to h which leads to a set of ma-
trices {W h′

q ,W h′

k ,W h′

v |h′ = 1, 2, 3, . . . , h} for the input
sequence. The self-attention with h > 1 is called multi-
head self-attention (MHSA), which we use not only as the
building block in permutation-equivariant aggregation of
visual tokens, but also demonstrate to learn representations
of morphological phenotypes, as seen in Figure 1.

B. Additional Implementation Details

Efficient Inference and Batching in HIPT. At inference
time, we feed in xWSI ∈ RM×256×256×[3×16×16] with a
slide-level batch size BWSI = 1 into HIPT, in which the
respective dimensions correspond to: length of x4096 re-
gions in xWSI, length of x256 patches in x4096, length
of x16 cells in x256, and the remaining dimensions be-
ing the x16 shape. Without pre-extracting any tokens, in-
ference can be performed in first defining a DataLoader
class over a M × 3 × 4096 × 4096 view of xWSI with
B4096 = 1 to iterate over single x4096 regions, followed
by using Einsum operations to unroll each region via
Einsum : R1×3×4096×4096 → R256×3×256×256. Lastly, an-
other DataLoader is defined over this view using the first

Figure 1. ViT256-16 DINO Pretraining. Self-supervision us-
ing knowledge distillation in DINO to pretrain ViT256-16 on his-
tology image patches [2]. A student network ϕs256 is trained to
match the probability distribution of a Siamese teacher network
ϕt256 using a cross-entropy loss, with ϕ parameterized using a
ViT256-16 model, and local and global crops applied as data aug-
mentation. Interpretability of multi-head attention weights reveal
that DINO learns distinct morphological phenotypes. In ”red” are
high-attention visual tokens with attention weights greater than
0.5.

dimension as B256 = 256, which then leads to the bottom-
up aggregation strategy starting with the ViT256-16 forward
pass.

Pretraining Dataset Curation:. As noted in the main
paper, we pretrain ViT256-16 and ViT4096-256 in differ-
ent stages using 10,687 FFPE (formalin-fixed, paraffin-
embedded) H&E-stained diagnostic slides from 33 cancer
types in the The Genome Cancer Atlas (TCGA), and ex-
tracted 408,218 x4096 regions at an 20× objective (M ≈ 38
regions per slide) for pretraining ViT4096-256, with a total
of 104 Million x256 patches for pretraining ViT256-16 [5].
To curate these regions, we used the Tissue Image Anal-
ysis (TIA) Toolbox to patch slides into non-overlapping,
tissue-containing regions, with additional quality control
performed to limit regions that contained predominantly
background slide information (e.g. - white space). A
limitation of this study is that since our method requires
[4096× 4096] patching, not all slides from the TCGA were
used for pretraining and weakly-supervised evaluation. A
full table showing number of WSIs and regions used is
shown on a per-cancer basis in Table 1. As efficient stor-



age, x4096 images for each slide were stored using TAR
archives using the WebDataset API, which we plan to make
available in a public release.

Attention Visualization:. To create attention heatmaps, we
follow the work of Caron et al. using the attention map for
each head at the last ViT stage, and linearly interpolate the
attention map such that the attention score each token is
[16× 16] for ViT256-16 and [256× 256] for ViT4096-256.
No Gaussian blurring or other smoothing operations were
performed. To obtain more granular maps for ViT4096-256,
we computed attention scores for each patch using an over-
lapping stride length of 64. To create hierarchical atten-
tion maps, we factorized the attention weight distribution
within each weighted x256 patch from ViT4096-256 with
the attention weight distribution of ViT256-16. These hier-
archical attention maps can be interpreted as: For weighted
x256 patches localized by ViT4096-256 by head X, what are
the important x16 localized within that patch by head Y in
ViT256-16? This allows the creation of certain attention
maps that localize: 1) [16×16] tumor cells within 256×256
stromal regions, or 2) [16×16] tumor cells within 256×256
poorly-differentiated glands / larger tumor structures. With
h = 6 for both ViT256-16 and ViT4096-256, a total of 36 hi-
erarchical attention maps can be created. From pathologist
inspection, 2-3 heads in each VIT model localized unique
morphological phenotypes.

C. Additional Quantitative Experiments
C.1. Variations in HIPT Architecture

Model Descriptions. We performed ablation experiments
assessing the most impactful components of the HIPT ar-
chitecture, as demonstrated in the slide-level classification
results in Table 2. Specifically, we inspected variations in
the HIPT architecture:

• ViT256-16PF, AP-256, AP-4096: This variation uses
no ViT components as permutation-equivariant aggre-
gation hidden layers at the patch- and region-level.
Features are still pre-extracted using a ViT256-16 (de-
noted with “P” for pretrained, “F” for frozen), how-
ever, only attention pooling (AP) is performed across
the different stages.

• ViT256-16PF, ViT4096-256, ViTWSI-4096: This
variation uses ViT4096-256 and ViTWSI-4096 for
patch- and region-level aggregation, however, these
aggregation layers are trained from scratch.

• ViT256-16PF, ViT4096-256P, ViTWSI-4096: This
variation uses ViT4096-256 and ViTWSI-4096 for
patch- and region-level aggregation, withViT4096-256

Dataset # Slides # Regions Size (in GB)

ACC 223 12254 230.9
BLCA 454 21381 389.1
BRCA 1038 30248 521.1
CESC 271 8846 152.8
CHOL 38 2214 42.2
COADREAD 588 14705 249.3
ESCA 145 5820 103.9
GBMLGG 1541 54158 932.5
HNSC 451 17204 288.6
KIR(C/P/CH) 918 38019 705.5
LIHC 375 19358 369.1
LUADLUSC 1008 43487 757.3
LYM 43 1590 28.3
MESO 81 2521 43.9
OV 107 5222 95.1
PAAD 204 7377 133.2
PRAD 421 17171 301.9
SARC 567 26974 503.7
SKCM 456 19415 351.7
STAD 371 14664 253.0
TGCT 233 8389 154.8
THCA 516 26611 418.5
UCEC 561 34494 628.0
UVM 77 1657 26.7

Total 10687 433779 7.7 TB

Table 1. TCGA Pan-Cancer Datasheet. Total number of slides,
4096× 4096 image regions, and their storage size.

additionally pretrained using Stage 2 Hierarchical Pre-
training.

• ViT256-16PF, ViT4096-256PF, ViTWSI-4096: This
variation uses ViT4096-256 and ViTWSI-4096 for
patch- and region-level aggregation, with ViT4096-256
additionally pretrained and frozen. Only parameters
for ViTWSI-4096 are finetuned.

Pretraining and Freezing Prevents Overfitting. Across
slide-level classification tasks, we observe that pretraining
and freezing ViT4096-256 in HIPT is an important compo-
nent an achieving strong performance. Without freezing,
training the parameters for ViT4096-256 results in the to-
tal number of trainable parameters to be 3388996. Though
small for a Transformer model, training and finetuning on
WSI datasets with less than 1000 data points may easily
result in overfitting, as demonstrated in Table 2. In partic-
ular, we observe that without freezing, performance drops
from 0.923 to 0.652 and 0.952 to 0.820 on NSCLC sub-
typing with 25% and 100% training data finetuning respec-
tively. We also compare HIPT to a variation that does not



BRCA Subtyping NSCLC Subtyping RCC Subtyping
Architecture # Params 25% Training 100% Training 25% Training 100% Training 25% Training 100% Training

ViT-16PF, AP-256, AP-4096 494597 0.784 ± 0.061 0.837 ± 0.062 0.835 ± 0.050 0.928 ± 0.023 0.955 ± 0.016 0.965 ± 0.013
ViT-16PF, ViT-256, ViT-4096 3388996 0.758 ± 0.076 0.823 ± 0.071 0.695 ± 0.069 0.786 ± 0.096 0.928 ± 0.038 0.956 ± 0.016
ViT-16PF, ViT-256P, ViT-4096 3388996 0.762 ± 0.089 0.827 ± 0.069 0.652 ± 0.076 0.820 ± 0.047 0.935 ± 0.022 0.956 ± 0.013
ViT-16PF, ViT-256PF 505204 0.821 ± 0.069 0.874 ± 0.060 0.923 ± 0.020 0.952 ± 0.021 0.974 ± 0.012 0.980 ± 0.013

ResNet-50B3, IN, GMP - 0.638 ± 0.089 0.667 ± 0.070 0.696 ± 0.055 0.794 ± 0.035 0.862 ± 0.030 0.951 ± 0.016
ViT-16PF, GMP - 0.605 ± 0.092 0.725 ± 0.083 0.622 ± 0.067 0.742 ± 0.045 0.848 ± 0.032 0.899 ± 0.027
ViT-16PF, ViT-256PF, GMP - 0.682 ± 0.055 0.775 ± 0.042 0.773 ± 0.048 0.889 ± 0.027 0.916 ± 0.022 0.974 ± 0.016

Table 2. Slide-Level Classification. Top Row. Ablation study assessing impact of Transformer attention, pretraining, and parameter
freezing in the HIPT architecture. Bottom Row. Ablation study assessing K-Nearest Neighbors (K-NN) performance using the average
pre-extracted embeddings with different pretrained embedding types. Abbreviations. ”P” = Pretrained. ”F” = Frozen. ”PF” = Pretrained
and Frozen. ”ViT” = Vision Transformer. ”ResNet-50B3, IN = ResNet-50 truncated after the 3rd residual block, with ImageNet transfer
learning. ”AP” = Attention Pooling only. ”GMP” = Global Mean Pooling only. For ease of notion and table space, we remove the subscript
which denotes the image resolution operated on by the ViT.

Method Dim CRC-100K-R ↑ CRC-100K-N ↑ BCSS ↑ BreasthPathQ ↓

ResNet-50B3, IN 1024 0.935 0.983 0.599 0.058
ViT-16PF, BRCA, S1 384 0.941 0.987 0.593 0.029
ViT-16PF, PANC, S1 384 0.941 0.983 0.616 0.023
ViT-16PF, PANC, S4 1536 0.927 0.985 0.612 0.052

Table 3. Patch-Level Classification. Ablation study assessing K-Nearest Neighbors (K-NN) performance on patch-level datasets with
different embedding types. Abbreviations. ”P” = Pretrained. ”F” = Frozen. ”PF” = Pretrained and Frozen. ”ViT” = Vision Transformer.
”ResNet-50B3, IN = ResNet-50 truncated after the 3rd residual block, with ImageNet transfer learning. ”BRCA” = Pretrained on BRCA only.
”PANC” = Pretrained on Pan-Cancer data. ”S1” = Using features from only last stage / hidden layer of ViT. ”S4” = Featured concatenated
from the last 4 stages. For ease of notion and table space, we remove the subscript which denotes the image resolution operated on by the
ViT.

use any Transformer attention in patch- and region-level
aggregation, which performed better than HIPT variations
with ViT4096-256 finetuned, but still worse than HIPT with
ViT4096-256 frozen.

C.2. Assessing Quality of x256 Representations

Though the primary focus of our paper is in hierarchi-
cal pretraining using the HIPT architecture, we also make
publicly available the pretrained weights of ViT256-16,
which can be used as a general feature extractor for
256 × 256 histology patches. Accordingly, we perform
a model audit that assesses the quality of x256 represen-
tations for our pan-cancer ViT256-16 model (denoted as
ViT256-16PF, PANC, S1), and compare with three other em-
bedding types: 1) Pretrained ImageNet (IN) features from
a truncated ResNet-50 (after the 3rd residual block, or
ResNet-50B3, IN), 2) ViT256-16PF, BRCA, S1 features trained
on only data from TCGA-BRCA (as an organ-specific com-
parison using the same hyper-parameters and # of iteration),
and 3) ViT256-16PF, PANC, S4 features trained on pan-cancer
data from the TCGA (but with features concatenated across
the last four hidden layers, denoted as ”S4”, versus just the
last stage, ”S1”). We assess these representations quan-
titatively using KNN evaluation for slide-level tasks (Ta-

ble 2) and most patch-level tasks (using global mean pool-
ing (GMP), Table 3), as well as qualitatively using UMAP
scatter-plots. Description of patch-level datasets are found
below:

• CRC-100K: CRC-100K is a dataset of 100,000 his-
tological images of human colorectal cancer and
healthy tissue, extracted as 224 × 224 patches at 20×
magnification (available with and without Macenko
normalization), and is annotated with the following
non-overlapping tissue classes: adipose (Adi), back-
ground (Back), debris (Deb), lymphocytes (Lym), mu-
cus (Muc), smooth muscle (Mus), normal colon mu-
cosa (Norm), cancer-associated stroma (Str), colorec-
tal adenocarcinoma epithelium (Tum) [4]. We exper-
iment on CRC-100K with and without Macenko Nor-
malization (denoted with “-N” and “-R” respectively).
We report multiclass AUC performance.

• BCSS: The Breast Cancer Semantic Segmentation
(BCSS) Dataset is a dataset that contains over 20,000
segmentation annotations from the TCGA-BRCA co-
hort, from which we mined 256× 256 patches at 20×
magnification for the following overlapping cell types:
background tissue, tumor cells, stroma cells, and lym-



Figure 2. UMAP Visualization of Pretrained Embeddings. 2D UMAP scatter-plot visualizing global structure of pretrained embeddings
on CRC-100K (with and without Macenko stain normalization). In ResNet-50B3, IN, global structure for many class types are not well-
preserved, with worse representation quality in CRC-100K without stain normalization. Across all ViT256-16 models, global structures
for morphological subtypes such as normal, tumor, stroma, and mucous are well-preserved in both datasets. We used default UMAP
parameters of: neighbors = 15, dist = 0.1.

phocyte infiltrates [1]. Unlike CRC-100K, BCSS over-
laps in label categories as tissue patches can have mul-
tiple labels of each cell type. As a result, we used the
majority cell phenotype as the patch-level label during
supervision. We report multiclass AUC performance.

• BreastPathQ: BreastPathQ is a challenge dataset from
the TCGA-BRCA cohort that measures tumor cellular-
ity, which measures the fractional occupancy of tumor
cell presence in the image patch [6]. We evaluated on
the public train/validation split of the challenge, which
provides 2579 and 187 patches respectively at 20×,
and report mean-squared error (MSE) using linear re-
gression.

Comparison with ImageNet Features. In compar-
ing ViT256-16PF, PANC, S1 with ResNet-50B3, IN, on both
patch- and slide-level evaluation using KNN, we ob-
serve that ViT256-16PF, PANC, S1 features are generally more
robust. On patch-level classification, ResNet-50B3, IN
and ViT256-16PF, PANC, S1 do equally well on CRC-100K-
N (MNIST equivalent of patch-level tasks in CPATH),
with ViT256-16PF, PANC, S1 performing better on BCSS and
BreastPathQ (more challenging datasets with noisy and
fine-grained labels respectively). ViT256-16PF, PANC, S1 also
performed better on CRC-100K-R, in which images are

not stain normalized and thus have more variation due to
institution-specific staining protocols. One hypothesis for
the surprisingly robust ResNet-50B3, IN features is that the
feature maps before the last residual block are low-level
feature descriptors, and are able to distinguish between dis-
tinct morphologies such as tumor versus stroma, or tumor
versus adipose tissue. In visualizing UMAP scatter plots
of pre-extracted ResNet-50B3, IN features, despite the high
AUC performance on CRC-100K-R and CRC-100K-N, the
representation quality is poor as global structures within the
same class types are not preserved (Figure 2). On the other
hand, global structures for classes such as stroma, tumor,
normal, and mucous tissue are well-preserved for all ViT
models.

In slide-level KNN evaluation, interestingly, we see
that mean ResNet-50B3, IN features out-perform mean
ViT256-16PF, PANC, S1 features on NSCLC and RCC subtyp-
ing, with ViT256-16PF, PANC, S1 performing better on BRCA
subtyping. This result can be attributed to NSCLC and RCC
subtyping being generally easier tasks in which subtypes
can be more readily distinguished, whereas BRCA subtyp-
ing being more challenging due to the phenotypic similarity
of IDC to ILC that typically requires stroma context.

Organ-Specific versus Pan-Cancer Image Pre-
training. In comparing ViT256-16PF, PANC, S1 with



Figure 3. Comparison of Pan-Cancer versus BRCA pretraining in ViT256-16. For ViT256-16PF, BRCA, S1 and ViT-16PF, PANC, S1, we
visualize the attention weights for h = 0, 3 respectively which we observe to be good at localizing cells. For both ViT256-16 models,
overlayed in ”red” are high-attention visual tokens with attention weights greater than 0.5. In addition, we all show accompanying cell
segmentation results from a HoVeR-Net model [3]. Overall, we observe that Pan-Cancer pretraining in ViT256-16 is able to localize tumor
and lymphocytes better than BRCA pretraining, with BRCA pretraining attending to blood cells in some instances.

ViT256-16PF, BRCA, S1, briefly, we note that both models
have similar performance across most patch-level tasks,
with ViT256-16PF, PANC, S1 performing slightly better on
BCSS and BreastPathQ evaluation. In examining global
structure of morphological subtypes in CRC-100K, despite
not being pretrained on CRC data, ViT256-16PF, BRCA, S1
is able to preserve global structure better in stroma and
mucous subtypes. In Figure 3, we additionally visualize
the cell localization results of each ViT model, with
ViT256-16PF, PANC, S1 performing overall better in localizing
tumor cells and lymphocytes, with ViT256-16PF, BRCA, S1
attending more to blood cells.

Feature Concatenation across ViT256-16 Hidden Lay-
ers. Following Caron et al., we also concatenated the [CLS]
tokens from the last four stages of ViT256-16, resulting in
a 1536-dim embedding [2]. We observe no improvement in
performing feature concatenation.

Concluding Remarks on x256 Representations. In ad-
dition to having strong representation quality and inter-
pretability mechanisms in finding unique morphological
features, a key detail about ViT256-16 is that the embed-
ding dimension is relatively small (with a length of 384),
which allows Stage 2 Hierarchical Pretraining and finetun-
ing of ViT4096-256 to be tractable on commercial worksta-
tions. Though longer embedding dimensions may lead to
better performance on some patch-level tasks, our ultimate
goal is in building hierarchical models for slide-level rep-
resentation learning, which relies on: 1) shorter embedding
dimensions, and 2) [16× 16] cell-level interpretability.

D. Additional Visualizations
Additional visualizations for hierarchical attention maps

are shown in Figure 4, 5. Attached in is also a hierarchical
attention map for Figure 3 in its native 4096× 4096 resolu-
tion. Due to space constraints, we created a repository to vi-
sualize ViT256-16, ViT4096-256, and hierarchical attention
heatmaps at the following link address: https://bit.ly/HIPT-
Supplement.

https://bit.ly/HIPT-Supplement
https://bit.ly/HIPT-Supplement


Figure 4. Hierarchical Attention Maps for Invasive Breast Carcinoma (BRCA). Similar to Figure ??, factorized attention distributions
of combined ViT256-16 and ViT4096-256 attention distributions are able to localize: 1) invasive tumor cells in demoplastic stroma, 2)
tumor cells arranged in larger tumor nest patterns, which is important in distinguishing Invasive Ductal versus Lobular Carcinoma as well
as survival outcomes.



Figure 5. Hierarchical Attention Maps for Colorectal Cancer (CRC). Similar to Figure ??, factorized attention distributions of com-
bined ViT256-16 and ViT4096-256 attention distributions are able to localize: 1) invasive tumor cells in muscle and stromal regions, 2)
tumor cells forming poorly-differentiated glands, which are both important prognostic histopathologic biomarkers in determining severity
in cancer staging and survival outcomes.
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