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1. Details of Geometric Consistency Set
Here we provide more details about how to acquire the

geometric consistency sets. For a 3D scene surface S we
can have a sequence of corresponding RGB-D scanning im-
ages. We use the surface over-segmentation results pro-
duced by a normal-based graph cut method [2,5] as the geo-
metric consistency sets {Pj}. In this way, the 3D scene will
be divided into many small segments. Figure 2 shows some
examples, and Figure 4 demonstrates the sets generated
with different clustering edge weight thresholds. Then we
project the 3D surface points together with the correspond-
ing geometric consistency set id (here we use different ids
to label the points in different geometric consistency sets)
from 3D to 2D image views, and the pinhole camera model
is used for 3D to 2D projection. Since the matching be-
tween the reconstructed 3D surface and the corresponding
2D image views may have a miss-match problem, we filter
out invalid projections by comparing the depth difference
between the projection points and the view depth maps.
The projected points with the depth difference larger than
a threshold, 0.05 in our experiments, will be regarded as in-
valid. Based on the valid projection points, we can have the
corresponding projection Pm

j = {proj(s) ∈ Im|s ∈ Pj}
of the geometric consistency set Pj from 3D onto 2D image
view Im.

2. Effect of the Initial Learning Rate
We study different choices of the initial learning rate in

the pre-training stage to see how it will influence the fine-
tuning results. Specifically, the networks are pre-trained
with different initial learning rates, including 0.1 and 0.01,
on the ScanNet [1] dataset and fine-tuned for the image
semantic segmentation task on ScanNet and NYUv2 [8]
datasets. Table 1 illustrates the performance of both our
method and Pri3D [4]. Although the network performance
varies with the initial learning rate, our method consistently
outperforms Pri3D on all the settings.

3. Convergence
We study the convergence of the methods by fine-tuning

the pre-trained networks on ScanNet [1] semantic segmen-

Method ScanNet NYUv2

Pri3D (0.01) 59.7 54.8
Ours (0.01) 60.3 55.4

Pri3D (0.1) 61.7 51.4
Ours (0.1) 63.1 54.1

Table 1. Effect of the initial learning rate. Effect of different
initial learning rates in the pre-training stage. ResNet50 is used
as the backbone encoder, the network is pre-trained on ScanNet
dataset and fine-tuned for the image semantic segmentation task
on ScanNet and NYUv2 datasets. mIOU is used for evaluation.

tation dataset and reporting the performance on the valida-
tion set after different number of epochs. As shown in Fig-
ure 1, both Pri3D [4] and our proposed method converge
within 10 epochs, and our method consistently outperforms
Pri3D after that.
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Figure 1. Convergence of the methods. We fine-tune the pre-
trained networks on the ScanNet semantic segmentation task. The
average performance of 3 runs for each method is reported.

4. Representation Space Analysis

We analyze the quality of the learned representation
spaces by computing the coding rate [10], which measures
the intra-category compactness, on ScanNet 2D semantic
segmentation validation set.
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Figure 2. Geometric consistency sets on 3D. Different colors indicate different geometric consistency sets.

Specifically, let F ∈ Rd×m be the matrix containing m
feature vectors with dimension d. The coding rate of F can
be defined as:

R(F, ϵ) =
1

2
log det(I+

d

mϵ2
FFT) (1)

where I is the identity matrix, and ϵ is the distortion pa-
rameter. For each image, we extract pixel features with pre-
trained networks. Since the pixel features extracted with
different pre-trained networks may have different overall
scales, we scale the features by dividing by average fea-
ture length. Then, we compute the coding rate for the fea-
tures within each ground truth category. The coding rate of
an image can be computed by averaging the coding rates
of all the categories within this image. The average coding
rates of Pri3D [4] and ours are 54.04 and 34.05 respectively.

This means our pre-trained representations are more com-
pact than Pri3D. Moreover, we also visualize the learned
features by PCA. As shown in Figure 3, our features are
cleaner and more separable.

5. Ablation of Two-stage Training

We test our method with different pre-training configu-
rations, i.e. set-InfoNCE loss only, set-InfoNCE plus pixel-
InfoNCE and two-stage training. As shown in Table 2, the
best performance is achieved with two-stage training that
learns from low-level to high-level. Similar strategies can
also be found in research topics like curriculum learning.
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Figure 3. PCA embedding of learned pixel features. Different colors indicate different ground truth segmentation categories, and black
color indicates the unlabeled regions.

Threshold: 0.01 Threshold: 0.05

Figure 4. 3D geometric consistency sets generated by different parameters. Different colors indicate different geometric consistency
sets, and larger clustering edge weight threshold will lead to larger sets. Black color denotes the unlabeled regions.

set-InfoNCE set + pixel-InfoNCE two stage

mIoU 60.6 61.0 63.1

Table 2. Two-stage training ablation. Performance of 2D se-
mantic segmentation task on ScanNet with different pre-training
configurations. ResNet50 is used as the backbone encoder.

6. Performance on SUN RGB-D Dataset

To further validate the transferability of our method, we
fine-tune the ScanNet pre-trained representations on SUN
RGB-D Dataset [9] for the 2D semantic segmentation task.
Specifically, the dataset contains 5k images for training and
5k images for testing, and the networks are pre-trained with

initial learning rates of 0.1 and 0.01 respectively. As shown
in Table 3, our method achieves better performance com-
pared with Pri3D [4].

7. Performance on KITTI Dataset

We further test our method on KITTI [3] dataset, to see
the effectiveness of our method in the outdoor autonomous
driving scenario. KITTI is a dataset captured by driving
around a city with cars equipped with different kinds of sen-
sors, including stereo camera, GPS, laser-scanner, etc. In
our experiment, we use the unlabeled RGB-D sequences for
pre-training and fine-tune the pre-trained network on the 2D
image semantic segmentation task. To compute the geomet-
ric consistency sets, we use the Voxel Cloud Connectivity
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Figure 5. More qualitative results of semantic segmentation task on ScanNet and NYUv2 datasets. All the methods are pre-trained
on ScanNet with ResNet50 as the backbone encoder.
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Method ResNet50

ImageNet Pre-training 34.8
Pri3D (0.1) 37.3
Ours (0.1) 38.1
Pri3D (0.01) 38.6
Ours (0.01) 39.2

Table 3. Performance on SUN RGB-D dataset. Pre-train on
ScanNet with different learning rates and fine-tune on SUN RGB-
D for 2D semantic segmentation. ResNet50 is used as the back-
bone encoder.

Method ResNet50

ImageNet Pre-training 28.5
Pri3D 33.2

Ours 33.7

Table 4. Performance on KITTI dataset. ResNet50 is used as
the backbone encoder, the network is pre-trained with unlabeled
RGB-D sequence on KITTI and fine-tuned for the image semantic
segmentation task. mIOU is used for evaluation.

Segmentation (VCCS) [6] method implemented by PCL [7]
library to extract clusters on the per-view point clouds. Dur-
ing training, for each view pair, we use the geometric con-
sistency sets from one view and project them onto the other,
while the geometric consistency sets from the other view
are ignored. In this way, we can have the same geometric
consistency sets for the corresponding views. Table 4 illus-
trates the results. We note that the point clouds in KITTI are
partial and noisy, and the moving objects in the scenes may
lead to incorrect correspondences between views, which
makes the results sensitive to different clustering parame-
ters. The experiment here is to demonstrate the possibil-
ity of adapting our method to outdoor scenes; we hope our
work can motivate future research in this direction.

8. More Qualitative Results

In Figure 5, we show more qualitative results of 2D se-
mantic segmentation task on ScanNet [1] and NYUv2 [8]
datasets. As is shown, the segmentation results produced
with our method have less noise compared with those from
other methods.
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