
Supplementary Material of Self-supervised Learning of Adversarial Example:
Towards Good Generalizations for Deepfake Detection

Liang Chen1 Yong Zhang2∗ Yibing Song2 Lingqiao Liu1∗ Jue Wang2

1 The University of Adelaide 2 Tencent AI Lab
{liangchen527, zhangyong201303, yibingsong.cv, arphid}@gmail.com

lingqiao.liu@adelaide.edu.au

In this supplementary material, we provide, 1. Details to
generate forgery regions in Section 1.

2. Visualizations of the embedded representations in
Section 2;

3. Visualization of the estimated forgery regions of our
model in Section 3;

4. Additional experiments regarding the generalizability
comparisons under different datasets in Section 4;

5. Additional experiments regarding the generalizability
comparisons under different image compression levels in
Section 6.

6. Ablation studies regarding the effectiveness of the fa-
cial dividing strategy of our method in Section 5.

7. Analyses of the selected weight hyper-parameters (i.e.
α, µ, and γ in Eq. (4) in the manuscript) in Section 7;

8. Pseudo codes and details in Section 8.

1. Details to generate forgery regions

The forgery regions are generated based on the facial
landmarks as stated in the manuscript. Taking the nose
forgery region for an example, we first draw a line in an all-
zero image with the endpoints that lie at the top and bottom
indicated by the landmarks, and the forgery region can be
obtained by dilating the line. We will include those details
in the revised version.

2. Visualizations of the Embedded Representa-
tions

This section presents the plots of the 2D orthogonal pro-
jection of the extracted patterns from our model and that
from the baseline model (i.e. Xception [9]). In particular,
we show the t-SNE visualization of features extracted from
different classifiers on FF++ test set in Figure 1. We can ob-
serve that both two models can well separate real and fake

∗Corresponding authors. This work is done when L. Chen is an intern
in Tencent AI Lab.

(a) Baseline (b) Ours

FF-DF FF-F2F FF-NTFF-FS Real

Figure 1. T-SNE visualization of features from different models.
Each dot represents the feature of an image on FF++ test set. Rep-
resentations of forgeries are more mixed in our detector than that
in the baseline model (i.e. Xception [9]), indicating that the pro-
posed adversarial augmentation and self-supervised tasks enable
the model to learn more generalizable features.

data, while the distributions of fake data are quite differ-
ent. Even if all forgeries in the original FF++ dataset are
considered as one class, they still reveal unique artifacts of
each face manipulation algorithm as shown in Figure 1 (a).
This may explain the pool generalizability of the baseline
model. In contrast, the fake representations extracted from
our detector are more mixed together, which indicates our
model tends to explore more common features among the
forgeries for classification. These observations verify that
the proposed adversarial augmentation and self-supervised
tasks can indeed boost the generalizability of a deepfake de-
tector.

3. Visualizations of the Estimated Forgery Re-
gions

In this section, we show the estimated forgery regions of
our detector. The visualizations are obtained by upsampling
the output forgery map (i.e. Me in our manuscript with the
size of H/16×W/16) to the size of H×W to the input size.
Some examples are shown in Figure 2. The forgery regions
in (a) are not provided in the original dataset and are roughly
estimated by comparing the forgeries to the pristines, and

Method DFDC [2] CelebDF [6] DF1.0 [4]
AUC ↑ AP ↑ ERR ↓ AUC ↑ AP ↑ ERR ↓ AUC ↑ AP ↑ ERR ↓

Xception [9] 0.679 0.716 0.380 0.594 0.715 0.460 0.698 0.807 0.329
Face X-ray [5] 0.700 0.737 0.350 0.742 0.823 0.336 0.723 0.819 0.302

F3Net [8] 0.780 0.808 0.291 0.751 0.829 0.321 0.832 0.847 0.292
RFM [12] 0.801 0.811 0.257 0.743 0.828 0.314 0.815 0.839 0.279
SRM [7] 0.797 0.819 0.299 0.794 0.861 0.276 0.738 0.816 0.300

Ours 0.818 0.831 0.250 0.797 0.860 0.275 0.918 0.930 0.252
Table 1. Generalizability Comparisons Under Different Datasets in terms of AUC (Area Under Curve), AP (Average Precision), and ERR
(Equal Error Rate). All methods are trained on the FF++ dataset [9]. Results for [9, 5, 7] are directly cited from [7].

(a) Original fake data (b) Synthesized fake data (c) Real data

Input Forgery region Output Me Input Forgery region Output Me Input Forgery region Output Me

Figure 2. Visualizations of the estimated forgery regions (i.e. Me) of our method.

the forgery regions in (b) are selected in our region selecting
space. We can observe that our estimated region maps are
close to the ground truth forgery regions in all three cases.

4. Additional Generalizability Comparisons
Under Different Datasets

In this section, we provide more experimental results
regarding the generalizability comparisons under different
datasets. All the models are trained on the FF++ data [9]
and tested on three challenging datasets including CelebDF
[6], DFDC [2], and DF1.0 [4]. Results are shown in Table
2. We observe that the proposed method performs favor-
ably than others in terms of AUC (Area Under Curve), AP
(Average Precision), and ERR (Equal Error Rate).

5. Ablation Studies Regarding the Face Divid-
ing Strategy

As we finely divide a facial image into 10 regions for se-
lecting, questions may be raised whether the selection space
is large enough to cover all scenarios or our strategy is bet-
ter than the other face dividing scheme [5, 13]. To answer
these questions, we conduct the following two ablation ex-
periments: (1) We use newly synthesized samples, whose
forgery regions are randomly located in the face region, and
the forgery regions are also with random sizes (i.e. Ours w/
ran. face), to repalce the augmented samples in our origi-
nal implementation. This setting can cover all facial regions
ideally; (2) We replace our facial dividing strategy with that
in [5, 13] where the whole inner face is used instead of di-
viding it to small regions (i.e. Ours w/ all face). Note these
two settings avoid the selectings of region number but still
require selecting the blending types and the mixup blending
ratios, and the self-supervised tasks corresponding to them
are the same as those in our original implementation.

We also use the four methods in FF++ (i.e. DF [1], F2F
[11], FS [3], and NT [10]) for training and test the models
in three benchmark datasets (i.e. CelebDF [6], DFDC [2],
and DF1.0 [4]). Comparison results in the term of AUC is
reported in Table 2 where our face dividing strategy per-
forms better than random selecting and that from [5, 13].
The main reason is that most deepfake techniques focus on
facial features such as eyes, nose, and mouth, and these fea-
tures are well covered in our selecting space. While other
facial regions may not be used as broadly as these facial
features in current deepfake methods. Meanwhile, with the
help of adversarial training, the samples can select the most
challenging region that enables the classifier to learn more
generalizable features. From the experiments, we can con-
clude that the proposed facial region selecting space is large
enough for our training process, and it performs than the
other face selecting strategy [5, 13].

Algorithm 1 Pseudo codes of our model in a pytorch style.
Ip, If : prisitine and forgery from the original training dataset
Ia: newly synthesized adversarial forgery
G(·, θ), D(·, w): our synthesizer and detector networks
Rg : index for facial regions
Tg , Tgt: reference number for blending type and its GT
Ag , Agt: a continuous mixup blending ratio and its GT
Md, Mgt: deformed final mask and its GT
α, µ, γ: weight hyper-parameters. They are fixed as 0.1, 0.05, 0.1

for x in loader: # load a minibatch x with N samples
if x is forgery:

the original forgery will skip the synthesizing process
Ia = x; labels=1; Tgt = 4 # Mgt is provided

else:
randomly select a forgery from the dataset if the
input is a pristine from the original training dataset
Ip = x; If = randompick(loader)

generate two probability distributions and a scalar
p(Rg), p(Tg), Ag = G(Ip, If , θ) # N×10, N×4, N×1

sampling according to the probabilities
Rg , Tg = sample(p(Rg), p(Tg)) # N×1, N×1

obtain the final mask based on the selected region by applying
random deformation and blurring with a random sized kernel
Md = process(Rg)

defining the labels
labels=1; Mgt = Md; Tgt = Tg ; Agt = Ag ;
τ = 0 # binary weight for computing mixup ratio loss

forgery synthesizing process
if Tg == 0: # alpha blending

Ia=alpha blending(Ip, If , Md)
elif Tg == 1: # Poisson blending

Ia=Poisson blending(Ip, If , Md)
elif Tg == 2: # mixup blending

Ia=mixup blending(Ip, If , Md, Ag); τ = 1
else: # do nothing when Tg == 3, the input is still pristine

Ia=Ip; labels=0; Mgt=0

four outputs of the detector network
logits, Me, Te, Ae = D(Ia, w)

compute the mainstream loss three self-supervised losses
loss = AMSoftmaxLoss(logits, labels)+α× MSELoss(Me, Mgt) + \

µ×AMSoftmaxLoss(Te, Tgt) + τ × γ× MSELoss(Ae, Agt)

SGD updates for the detector network
loss.backward()
update(w)

if Tgt != 4: # the synthesizer does not update when not used

compute the discrete loss for the synthesizer network
logpm = log(p(Rg)).gather(1, Rg .data) + \

log(p(Tg)).gather(1, Tg .data)

REINFORCE updates for the synthesizer network
REINFORCE loss = -loss.detach()×logpm
REINFORCE loss.backward()
update(θ)

Method DF F2F FS NT Avg.
DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0

Ours w/ ran. face 0.764 0.697 0.663 0.765 0.683 0.761 0.754 0.719 0.687 0.717 0.643 0.806 0.722
Ours w/ all face 0.755 0.713 0.709 0.729 0.694 0.740 0.723 0.730 0.715 0.702 0.712 0.862 0.732

Ours 0.772 0.730 0.742 0.787 0.781 0.786 0.742 0.800 0.695 0.741 0.759 0.889 0.769

Table 2. Ablation studies regarding the effectiveness of the face dividing strategy. The metric is AUC. Please see Sec. 5 faced for detailed
experimental settings.

Training set Method
Test set

LQ HQ
DF FS DF FS

F2F (LQ)

Xception [9] 0.666 0.504 0.698 0.559
Face X-ray [5] 0.675 0.511 0.690 0.529

F3Net [8] 0.698 0.560 0.719 0.578
RFM [12] 0.699 0.580 0.732 0.627
SRM [7] 0.727 0.552 0.753 0.550

Ours 0.746 0.578 0.810 0.694

F2F (HQ)

Xception [9] 0.546 0.511 0.749 0.753
Face X-ray [5] 0.578 0.525 0.662 0.859

F3Net [8] 0.571 0.521 0.798 0.677
RFM [12] 0.556 0.515 0.794 0.646
SRM [7] 0.592 0.533 0.792 0.754

Ours 0.610 0.585 0.825 0.762

Table 3. Additional generalizability comparisons across different
compression levels in the term of AUC. Our method achieves com-
parable performance against existing methods.

Effect of α Test set Avg
DFDC CelebDF DF1.0

α = 0 0.794 0.754 0.842 0.797
α = 0.1 0.818 0.797 0.918 0.844
α = 1 0.798 0.789 0.886 0.824
α = 10 0.801 0.734 0.872 0.802

Table 4. Effect of α to our model in the term of AUC while training
on the FF++ dataset. Other hyper-parameters µ and γ are set to be
0.05 and 0.1 in this setting.

Effect of µ Test set Avg
DFDC CelebDF DF1.0

µ = 0 0.805 0.751 0.859 0.805
µ = 0.05 0.818 0.797 0.918 0.844
µ = 0.5 0.817 0.728 0.901 0.815
µ = 5 0.801 0.733 0.892 0.809

Table 5. Effect of µ to our model in the term of AUC while training
on the FF++ dataset. Other hyper-parameters α and γ are both set
to be 0.1 in this setting.

Effect of γ Test set Avg
DFDC CelebDF DF1.0

γ = 0 0.803 0.740 0.873 0.805
γ = 0.1 0.818 0.797 0.918 0.844
γ = 1 0.804 0.762 0.878 0.815
γ = 10 0.827 0.744 0.871 0.814

Table 6. Effect of γ to our model in the term of AUC while training
on the FF++ dataset. Other hyper-parameters α and µ are set to be
0.1 and 0.05 in this setting.

6. Additional Generalizability Comparisons
Under Different Compression Levels

Some results regarding the generalizability comparisons
under different image compression levels are given in Sec.
4.2 in our manuscript. In this section, we provide more ex-
perimental results conducted in the FF++ datasets. Evalu-
ation results are shown in Tabel 3. Our method performs
favorably against current state-of-the-art methods.

7. Hyper-Parameter Analyses
The weight hyper-parameters in Eq. (4) in the

manuscript are empirically fixed as α = 0.1, µ = 0.05,
and γ = 0.1. In this section, we conduct ablation studies
to analyze the sensitivity of our model to different settings
of these hyper-parameters. We follow the cross-dataset set-
ting by training our model on the FF++ dataset and testing
it on CelebDF [6], DFDC [2], and DF1.0 [4]. The hyper-
parameters are set by varing one while fixing the other two.
Evaluation results in the term of AUC are reported on Ta-
ble 4, 5, and 6. We observe our model performs the best
when adopting the proposed hyper-parameters (i.e. by set-
ting α = 0.1, µ = 0.05, and γ = 0.1).

8. Pseudo Codes
Algorithm 1 presents the pseudo codes of the prosed

method. Please refer to the comments for detailed steps.

References
[1] DeepFakes. www . github . com / deepfakes /

faceswap Accessed 2021-04-24. 3
[2] Deepfake detection challenge. https://www.kaggle.

com/c/deepfake- detection- challenge Ac-
cessed 2021-04-24. 2, 3, 4

[3] FaceSwap. www.github.com/MarekKowalski/
FaceSwap Accessed 2021-04-24. 3

[4] Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and
Chen Change Loy. Deeperforensics-1.0: A large-scale
dataset for real-world face forgery detection. In CVPR, 2020.
2, 3, 4

[5] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong
Chen, Fang Wen, and Baining Guo. Face x-ray for more
general face forgery detection. In CVPR, 2020. 2, 3, 4

[6] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu.
Celeb-df: A new dataset for deepfake forensics. In CVPR,
2020. 2, 3, 4

[7] Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Gener-
alizing face forgery detection with high-frequency features.
In CVPR, 2021. 2, 4

[8] Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing
Shao. Thinking in frequency: Face forgery detection by min-
ing frequency-aware clues. In ECCV, 2020. 2, 4

[9] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
ICCV, 2019. 1, 2, 3, 4

[10] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. TOG, 38(4):1–12, 2019. 3

[11] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Nießner. Face2face: Real-time
face capture and reenactment of rgb videos. In CVPR, 2016.
3

[12] Chengrui Wang and Weihong Deng. Representative forgery
mining for fake face detection. In cvpr, 2021. 2, 4

[13] Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun
Xiong, and Wei Xia. Learning self-consistency for deepfake
detection. In ICCV, 2021. 3

www.github.com/deepfakes/faceswap
www.github.com/deepfakes/faceswap
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
www.github.com/MarekKowalski/FaceSwap
www.github.com/MarekKowalski/FaceSwap

