
Supplementary Material for
The Devil is in the Pose: Ambiguity-free 3D Rotation-invariant

Learning via Pose-aware Convolution

In this supplementary material, we first provide theoreti-
cal analysis on the rotation invariance of our proposed PaRI-
Conv in Section A. We further show more visualization on
the learned feature map in Section B. Section C investigates
the robustness of PaRI-Conv. Finally, in Section D, we pro-
vide detailed comparison results for the discussion section
in the main paper.

A. Theoretical Analysis on Rotation Invariance

Here, we provide theoretical analysis on the rotation in-
variance of our proposed PaRI-Conv.

A.1. Augmented Point Pair Feature

We first introduce some lemmas and prove that our pro-
posed Augmented Point Pair Feature (APPF) is rotation-
invariant, which is the building block of the rotation invari-
ance of our PaRI-Conv.

Lemma 1. Given two vector v1, v2 ∈ R1×3, the angle be-
tween them is invariant to arbitrary rotations R ∈ SO(3):

∠(v1, v2) = ∠(v1R, v2R). (1)

Proof. Given that ∠(v1, v2) ∈ [0, π], Equation 1 is equiva-
lent to cos(∠(v1, v2)) = cos(∠(v1R, v2R)), which is given
by:

cos(∠(v1R, v2R)) =
〈v1R, v2R〉
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v1RR
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(2)

where 〈·, ·〉 denotes inner product.

Lemma 2. Given two points p1, p2 ∈ R1×3, the dis-
tance between them is invariant to arbitrary rotations R ∈
SO(3):

dist(p1, p2) = dist(p1R, p2R). (3)

Proof.

dist(p1R, p2R) =
√

(p1 − p2)RR>(p1 − p2)>

=
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=dist(p1, p2)

(4)
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Figure 1. Illustration of the rotation equivariance of LRF.

The rotation invariance of our APPF relies on the stabil-
ity of LRF, which is expected to satisfy

∂∗r (Ω(pr)R) = ∂∗r (Ω(pr))R, (5)

where Ω(pr) denotes a local patch around point pr. This
implies an axis of the LRF ∂∗r built at Ω(pr) is equivariant
to arbitrary rotations ∀R ∈ SO(3). As shown in Figure 1,
intuitively, this means a stable LRF should rotate together
with the rotation of local patch Ω(pr).

Theorem 1. The APPF defined as follows is rotation-
invariant.

Pj
r =(‖d‖2, cos(α1), cos(α2), cos(α3),

cos(βr,j), sin(βr,j), cos(βj,r), sin(βj,r)),
(6)

Proof. The first four elements ‖d‖2, α1, α2, α3 are from the
original Point Pair Feature (PPF), whose rotation invariance
has been proved in [1]. Thus, here we only need to prove



that βr,j , βj,r are rotation invariant. Without loss of gener-
ality, we only prove the rotation invariance of βr,j . And the
rotation invariance of βj,r can be derived similarly.

As shown in Figure 4(c) of the main paper, the definition
of βr,j is given by βr,j = ∠(∂2r , πd). We define an induced
transformation LR, that acts on the functions f of the point
cloud P ∈ RN×3 as

[LR ◦ f ](P ) = f(PR), (7)

where f can be vectors or angles in the point cloud P such
as πd, βr,j . Intuitively, LR maps a feature f to itself af-
ter being rotated by R. Considering the property given in
Equation 5, LR ◦ ∂2r can be derived by:

LR◦∂2r = ∂2r (PR) = ∂2r (Ω(pr)R) = ∂2r (Ω(pr))R = ∂2rR.
(8)

Thus, we can proceed to derive:

LR ◦ βr,j =∠(LR ◦ ∂2r , LR ◦ πd)
=∠(LR ◦ ∂2r , LR ◦ (d− 〈d, ∂1r 〉∂1r ))
=∠(∂2rR, dR− 〈dR, ∂1rR〉∂1rR)
=∠(∂2rR, (d− 〈d, ∂1r 〉∂1r )R)
=∠(∂2rR, πdR)

=∠(∂2r , πd)

=βr,j ,

(9)

which proves βr,j is rotation invariant. Detailed explanation
of each procedure is given as follows. Line 2 is the exten-
sion of the projection πd. Line 3 is given by Equation 8 and
the definition of LR given in Equation 7. Line 4 is simply
derived by algebraic operations. Line 5 is derived by the
definition of πd. Line 6 utilizes Lemma 1.

A.2. PaRI-Conv

Lemma 3. The network inputs defined as ‖pi‖2,
sin(∠(∂1i , pi)), cos(∠(∂

1
i , pi)) is rotation invariant.

Sketch of the proof. The above representation is composed
of distances and angles, which are proved to be rotation in-
variant in Lemma 1 and Lemma 2. Consequently, the rep-
resentation is also rotation invariant.

Theorem 2. The l-th PaRI-Conv layer defined as follows is
rotation invariant.

xl+1
r =

∧
j∈N (pr)

W(Pj
r ) · xlj , (10)

Proof. We first assume the statement is true for layer k− 1,
which implies that the output features xk is rotation invari-
ant. Then, given that Pj

r is also rotation invariant, we can

proceed to derive:
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(
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)
=

∧
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W(Pj
r ) · xkj

=xk+1
r ,

(11)

which proves the statement is also true for layer k.
Moreover, given that the input feature x0j of layer l = 0 is

rotation invariant (Lemma 3), the statement is true for layer
0. Thus, by mathematical induction, the statement is true
for all l.

B. Visualization
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Figure 2. Low-level and high-level features learned by PaRI-Conv.
In each image pair, the left shows low-level features learned at
layer 2 and the right shows high-level features learned at layer 4.

B.1. Feature Activation

We visualize the features learned by our PaRI-Conv on
ModelNet40. As shown in Figure 2, we colourize the fea-
tures according to the level of activation at layer 2 (left) and
layer 4 (right). We observe that the shallower layer tends
to capture low-level features such as planes (a, c, f), conical
surface (b, h), circles (e, h) and corners (d, i). In deeper
layer, PaRI-Conv learns high-level structures such as stairs
(a), cones (b), lamp holders (c), heads (d), guitar necks and
head-stocks (e), etc.

B.2. Dense Rotation Invariant Features

Implementation Detail for Figure 6 in the Main Paper.
We use T-SNE to map the learned features into 3D repre-



sentations, which are then normalized to [0, 1] to represent
the RGB values.

Moreover, we observe that our PaRI-Conv is also invari-
ant to reflections, i.e., PaRI-Conv can map identical struc-
tures in the same shape (e.g., left and right wings and en-
gines) into similar representations. However, the represen-
tations learned by DGCNN tend to be bound with the ab-
solute location information and fail to stay invariant. We
assume that the reason for this invariance of PaRI-Conv is
that the reflection (similar to rotation) preserves the relative
poses between neighbouring structures. Thus, the W(Pj

r )
in Equation 10 remains the same, leading to invariance to
reflections. We leave further exploration on this property
for future work.
Feature Similarity. We further investigate the feature simi-
larity between different points on the same shape. As shown
in Figure 3, we visualize the similarity between the circled
point and other points. Different form rotation-sensitive
methods, such as DGCNN [4], our PaRI-Conv can also map
identical structures in different poses (e.g., the left, right
wings and edge of the bathtub) into the same features. This
indicates even on aligned data that are free of rotation per-
turbation, PaRI-Conv still has the potential in developing
more compact networks via kernel weight sharing.
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Figure 3. Feature similarity between the circled point and other
points learned by DGCNN and our PaRI-Conv on ModelNet40
dataset.

C. Robustness analysis
C.1. Robustness to Sampling Density

Figure 4 a) shows the results under varying density. Dur-
ing training, the input point clouds have 1024 points and
are augmented with random point dropout. Our method can
achieve reasonable performance with even half of the points

and consistently outperforms Li et al. [3]. Moreover, it also
shows that applying normal as the primal axis can signifi-
cantly improve the resistance to lower density.

C.2. Robustness to Noises

Figure 4 b) shows the results under Gaussian noises of
different standard variation (Std). Here, the normals are
directly extracted from noisy point clouds via PCA. Our
method has certain robustness to noises and can outperform
RI-GCN [2] when σ < 0.04. The inferior performance un-
der extreme noise could be attributed to the instability of
current LRF, which can be addressed by applying more sta-
ble LRFs.

Figure 4. Comparison results with a) varying sampling density
and b) different scales of noises on ModelNet40 dataset under
z/SO(3) setting.

C.3. Performance Under Different Neighbour Sizes

As shown in Table. 1, PaRI-Conv is not quite sensitive
to the neighbour size k, and achieves the best result with
k = 20.

k = 10 k = 20 k = 40
PaRI-Conv (pc) 90.5 91.4 90.4
PaRI-Conv (pc+normal) 91.5 92.4 91.7

Table 1. Performance under different neighbour size k on Model-
Net40 dataset. Results are evaluated under z/SO(3) setting.

D. Detailed Results on the Discussion
Here, we provide detailed comparison results with more

recent state-of-the-art methods in Table 2. Similar to other
methods, we also directly take 3D coordinates as input.
When normal is available, different from PointASNL [6]
that directly uses normal as additional input attributes, we
only utilize them to construct a more stable LRF for the ex-
traction of APPF. Surprisingly, with normal as a stable axis,
our PaRI-Conv achieves 93.8% overall accuracy, which
outperforms recent point convolution method PAConv [5]
and powerful transformer based method [7]. We believe that
above results reveal the significance of pose information,
which has been greatly overlooked by current point cloud
analysis techniques. Moreover, this also demonstrates that



the proposed PaRI-Conv is an effective operator in captur-
ing pose-variant geometric structures.

Methods input mAcc OA
DGCNN [4] pc 90.2 92.9
PointASNL [6] pc - 92.9
PointASNL [6] pc+normal - 93.2
PAConv [5] pc - 93.6
AdaptConv [8] pc 90.7 93.4
PointTransformer [7] pc 90.6 93.7
Ours pc 90.4 93.2
Ours (normal in LRF) pc 91.3 93.8

Table 2. Performance comparison with state-of-the-art rotation-
sensitive methods on ModelNet40 dataset. Rotation perturbation
is not applied. Our proposed PaRI-Conv directly takes 3D coordi-
nates as input.
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