
Supplementary Material for “Think Global, Act Local: Dual-scale Graph
Transformer for Vision-and-Language Navigation”

Shizhe Chen†, Pierre-Louis Guhur†, Makarand Tapaswi‡, Cordelia Schmid† and Ivan Laptev†
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Section A provides additional details for the model. The
experimental setup is described in Section B, including
datasets, metrics and implementation details. Section C
presents more ablation studies of our DUET model. Sec-
tion D shows more qualitative examples.

A. Model Details

A.1. Pretraining Objectives

As introduced in Sec 3.3, we employ two auxiliary
proxy tasks in pretraining in addition to behavior cloning
tasks SAP (single-step action prediction) and OG (object
grounding). In the following, we describe the two auxiliary
tasks: masked language modeling (MLM) and masked re-
gion classification (MRC). The inputs for the two tasks are
pairs of instruction W and demonstration path P .

Masked Language Modeling (MLM) task aims to learn
grounded language representations and cross-modal align-
ment by predicting masked words given contextual words
and demonstration path. We randomly replace tokens in
W by a special token [mask] with the probability of
15% [1]. Both the coarse-scale encoder and fine-scale en-
coder can generate contextual word embeddings for masked
words as introduced in Sec 3.2.2 and 3.2.3 respectively.
The coarse-scale encoder utilizes visual information from
an encoded graph at the final step as contexts, while the
fine-scale encoder utilizes the last panoramic observation
as visual contexts. We average output embeddings of
the two encoders for masked words, and employ a two-
layer fully-connected network to predict word distributions
p(wi|W\i,P) where W\i is the masked instruction and wi

is the label of masked word. The objective of the task is
minimizing the negative log-likelihood of original words:
LMLM = −log p(wi|W\i,P).

Masked Region Classification (MRC) aims to predict se-
mantic labels of masked image regions in an observation
given an instruction and neighboring regions. As instruc-
tions in goal-oriented VLN tasks mainly describe the last
observation in the demonstration path, we only apply the

MRC task on the fine-scale encoder. We randomly zero out
view images and objects in the last observation of P with
the probability of 15%. The target semantic labels for view
images are class probability predicted by an image classifi-
cation model [2] pretrained on ImageNet, while the labels
for objects are class probability predicted by an object de-
tector [3] pretrained on VisualGenome. We use a two-layer
fully-connected network to predict semantic labels for each
masked visual token, and minimize the KL divergence be-
tween the predicted and target probability distribution.

A.2. Speaker Model for Data Augmentation

We train a speaker model to synthesize instructions
based on visual observations for REVERIE dataset. As
REVERIE provides annotated object classes and Matter-
port3D also contains annotated room classes, we utilize
these semantic labels to alleviate the gap between vision
and language. Our speaker model consists of a panorama
encoder and a sentence decoder. The panorama encoder is
fed with image features of the panorama, semantic labels
of target object and target room as well as the level of the
room. We project all the input features into the same dimen-
sion, and utilize a transformer with self-attention to capture
relations of each token. The sentence decoder then sequen-
tially generates words conditioning on the encoded tokens.
We use LSTM as the decoder and follow the architecture in
show-attend-tell image captioning model [8].

Please note that we only employ data in REVERIE train-
ing split to learn the speaker model. We initialize the word
embeddings in encoder and decoder with pretrained GloVe
embeddings [9] and train the speaker model for 50 epochs.
We employ the trained speaker model to synthesize instruc-
tions for every annotated object in the REVERIE training
split, leading to 19,636 instructions in total. We extend the
size of the training set from 10,466 instruction-path pairs to
30,102 pairs.
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Table 1. Dataset statistics. #house, #instr denote the number of houses and instructions respectively.

VLN Task Dataset
Train Val Seen Val Unseen Test Unseen

#house #instr #house #instr #house #instr #house #instr

Object-oriented
REVERIE [4] 60 10,466 46 1,423 10 3,521 16 6,292

SOON [5] 34 2,780 2 113 5 339 14 1,411

Fine-grained
R2R [6] 61 14,039 56 1,021 11 2,349 18 4,173
R4R [7] 59 233,532 40 1,035 11 45,234 - -

B. Experimental Setups
B.1. Dataset

We primarily focus our evaluation on goal-oriented VLN
benchmarks REVERIE [4] and SOON [5]. To localize tar-
get objects in these benchmarks, the agent requires fine-
grained object grounding and advanced exploration capa-
bilities. We also test our model on less demanding VLN
benchmarks R2R [6] with step-by-step instructions and no
object localization. All the benchmarks build upon the Mat-
terport3D [10] environment and contain 90 photo-realistic
houses. Each house is defined by a set of navigable loca-
tions. Each location is represented by the corresponding
panorama image, GPS coordinates and a set of possible ac-
tions. We adopt the standard split of houses into training,
val seen, val unseen, and test subsets. Houses in the val
seen split are the same as in training, while houses in val
unseen and test splits are different from training.

Table 1 presents statistics of the three datasets. To be
noted, we follow the released challenge split on SOON
dataset instead of the split in the original paper [5]1.

B.2. Data Processing for SOON Dataset

The SOON dataset does not provide annotated object
bounding boxes per panorama. It only annotates the loca-
tion of target object bounding boxes for each instruction,
including the orientation of object’s center point as well
as orientation of top left, top right, bottom left, and bot-
tom right corners. The object grounding setting in SOON
dataset is to predict the orientation of object’s center point.
However, we observe that though the annotated objects’
center points are of good quality, their annotations of the
four corners are quite noisy2. Therefore, we propose to
clean the object bounding boxes in training and also pro-
vide more automatically detected objects as fine-grained vi-
sual contexts to represent each panorama.

1As shown in https://github.com/ZhuFengdaaa/SOON/
issues/1, Zhu et al. [5] do not release the split in their original pa-
per. Therefore, performance comparisons on SOON dataset are based on
their challenge report https://scenario-oriented-object-
navigation.github.io/.

2As shown in https://github.com/ZhuFengdaaa/SOON/
issues/2, about 50% polygons constructed by the annotated four cor-
ners do not contain the objects’ center point.

Specifically, we employ the BUTD detector [3] pre-
trained on VisualGenome to detect objects per panorama,
which covers 1600 object and scene classes. We filter
some unimportant classes for SOON dataset such as ‘back-
ground’, ‘floor’, ‘ceiling’, ‘wall’, ‘roof’ and so on. We then
select one of the detected objects as our pseudo target ac-
cording to the semantic similarity of object classes and the
Euclidean distances of the objects’ center points compared
to annotated target object. In this way, we convert the object
grounding setting in SOON datset similar to the setting in
REVERIE dataset, whose goal is to select one object from
all candidate objects. In inference, we utilize the orientation
of the selected object as our object grounding prediction.

B.3. Evaluation Metrics

Due to the different settings for object grounding in
REVERIE and SOON datasets, definitions of success in the
two datasets are different. In REVERIE dataset, the success
is defined as arriving at a location where the target object is
visible and selecting the target object among all annotated
candidate objects in the panorama of the location. In SOON
dataset, an agent succeeded in carrying out an instruction if
it arrives 3 meters near to one of the target locations and the
predicted orientation of target object’s center point is inside
of the annotated polygon of the object in the location.

B.4. Training Details

REVERIE: In pretraining, we combine the original dataset
with augmented data synthesized by our speaker model. We
pretrain DUET with the batch size of 32 for 100k iterations
using 2 Nvidia Tesla P100 GPUs. Then we use Eq. (12)
presented in the main paper to fine-tune the policy with the
batch size of 8 for 20k iterations on a single Tesla P100.
The best epoch is selected by SPL on val unseen split.
SOON: As the size of SOON dataset is much smaller
than REVERIE dataset and the instructions are much more
complicated, we do not synthesize instructions for SOON
dataset. We pretrain model using the original instructions
and our automatically cleaned object bounding boxes for
40k iterations with batch size of 32. We fine-tune the model
for 40k iterations with batch size of 2 on a single Tesla P100
and select the best model by SPL on val unseen split.
R2R: Following previous works [11–13], we adopt aug-
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Table 2. Comparison on R4R val unseen split. Methods are
grouped according to the used memories: ‘Rec’ for recurrent state,
‘Seq’ for sequence and ‘Map’ for topological map.

Mem Methods NE↓ SR↑ CLS↑ nDTW↑ SDTW↑

Rec

SF [14] 8.47 24 30 - -
RCM [15] - 29 35 30 13
PTA [16] 8.25 24 37 32 10
RelGraph [17] 7.43 36 41 47 34
RecBERT [12] 6.67 43.6 51.4 45.1 29.9

Seq HAMT [13] 6.09 44.6 57.7 50.3 31.8

Map
EGP [18] 8.0 30.2 44.4 37.4 17.5
SSM [19] 8.27 32 53 39 19
DUET (Ours) 5.60 50.2 47.0 42.7 29.3

mented R2R data [11] in pretraining. We pretrain the model
for 200k interations with batch size of 64. We fine-tune the
model for 20k iterations with batch size of 8.

C. Additional Ablations
C.1. Results on R4R dataset

In Table 2, we further provide results on R4R dataset.
The R4R dataset concatenates two paths in R2R dataset
whose end and start locations are adjacent, which alleviate
the bias of shortest path from the start to the target loca-
tion. Besides evaluating the navigation success rate (SR),
the dataset more focuses on path fidelity metrics to measure
the alignment between the predicted and groundtruth paths
such as nDTW and SDTW [20]. Our DUET model achieves
much better performance on success rate than all existing
approaches. However, the map-based methods naturally
contain more back-and-forth exploration sub-trajectories in
the predicted path, which are harmful to the path fidelity
metrics like nDTW. As a result, DUET is inferior to previ-
ous methods with local actions in terms of path fidelity met-
rics, though it still outperforms previous map-based meth-
ods with global actions.

C.2. Balance factor λ in fine-tuning objective

Table 3 presents the performance of using different λ in
the fine-tuning objective in Eq. (12) of the main paper. The
larger λ, the more important of the behavior cloning. We
can see that over-emphasizing behavior cloning is harmful
to the exploration ability. The model with λ = 1 achieves
the worst OSR and SR. Removing behavior cloning (λ = 0)
achieves good navigation performance such as in OSR, SR
and SPL, but it is less competitive in object grounding. We
think this is because the agent fails to navigate to target lo-
cations in its sampled trajectories, and is unable to train the
object grounding module. However, the agent is guaranteed
to arrive at target locations in behavior cloning.

Table 3. Ablation of balance factor λ in the fine-tuning loss.

Navigation Object Grounding
OSR SR SPL RGS RGSPL

0 53.00 48.22 33.00 32.12 22.04
0.2 51.07 46.98 33.73 32.15 23.03
0.5 52.06 46.98 32.38 32.43 22.72
1 50.33 45.64 32.54 30.19 21.50

Go to second level hallway next to the kitchen and clean the photo above the 
black bench and that is closest to the kitchen.

ss

DueTDUET

Go to the brown bedroom on level 2 at the end of the hall and open the left 
window.

DueTHAMT

DueTDUET DueTHAMT

Figure 1. Predicted trajectories of DUET and the state-of-the-art
HAMT [13] on REVERIE val unseen split. The green and check-
ered flags denote start and target locations respectively.

C.3. Backtrack ratio in inference

The backtrack action indicates that the agent does not
select a neighboring node from the local action space but
jumps to a previously partially observed node through the
global action space. We compute the backtrack ratio for
DUET. On the REVERIE val seen split, DUET only back-
tracks in 13.7% of the predicted trajectories; while on the
REVERIE val unseen split, DUET backtracks in 48.6% of
its predicted trajectories. As the agent has the capacity to
memorize house structures in seen environments, it can di-
rectly find the target location without much exploration in
seen environments. However, when the agent is deployed in
unseen environments, it has to explore more to find the tar-
get location specified by high-level instructions. When step-
by-step instructions are given such as in R2R dataset, we
observe the backtrack ratio significantly decreases to 23.2%
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exit the roped off hall, follow the red carpet, turn right, continue straight 
down the red carpet, enter room at the end, stop once inside the room.

ss

HAMT [30]DueTHAMT HAMT [15]

DueTDUET

Walk all the way forward passing all the picture frames on the wall on your 
left. Enter the corner on your left with the arch layout, and stop there.

DueTDUET

DueTHAMT

DueTHAMT

Figure 2. Predicted trajectories of DUET and the state-of-the-art
HAMT [13] on R2R val unseen split. The green and checkered
flags denote start and target locations respectively.

on val unseen split, which matches our expectation.

C.4. Fusion weights of coarse and fine scales

We observe that the agent typically puts more weights
on the fine-scale module in the beginning and at the end of
the navigation, and on the coarse-scale module in the mid-
dle. Quantitatively, the average weight of the coarse-scale
module is 0.36 in the beginning, 0.45 in the middle, and
0.42 at the end. The agent may not need to backtrack at
early steps, so it relies more on the local fine-scale module.
Then, the agent needs to explore so the global coarse-scale
module gets more attention. When deciding where to stop,
the agent should identify the target object and the fine-scale
module is emphasized again.

C.5. Failure analysis

We perform an additional quantitative evaluation on the
REVERIE dataset. For navigation, we measure whether an
agent stops at the target room type (e.g. a bathroom) or at
the correct location. We obtain the following results: (a) in-
correct room type: 29.82%; (b) correct room type + incor-
rect location: 23.20%; (c) correct location: 46.98%. This
shows that fine-grained scene understanding remains chal-
lenging. With respect to object grounding, once an agent
reaches the correct location, the object can be correctly lo-
calized 68.43% of the time.

D. Qualitative Examples
Figure 1 visualizes some examples of our DUET and the

state-of-the-art HAMT [13] model on REVERIE dataset. In
both the cases, the agents explore an incorrect direction in
the first attempt. However, DUET is able to efficiently ex-
plore another direction towards the goal. Figure 2 shows
some examples on R2R dataset. Though step-by-step in-
structions are provided, the instruction can still be ambigu-
ous. For example, both directions of the start point in the top
example of Figure 2 can “exit the rope off hall”. DUET is
also better at correcting its previous decisions when it finds
that the followup instructions do not match with the visual
observations.

We further provide some failure cases in REVERIE and
R2R datasets in Figure 3. In the top example of Fig-
ure 3, there are several bathrooms in the house and our
DUET model arrives at one of bathroom. However, the
arrived bathroom does not contain the fine-grained objects
specified in the instruction. It suggests that our model still
needs to improve the fine-grained object grounding capa-
bility. The bottom example presents three different instruc-
tions for the same trajectory on R2R dataset. The agent
succeeds in following the first instruction, but fails for the
other two instructions. We observe that the predictions are
not very robust across different language instructions.
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REVERIE: Go to the living room and ipe 
down the end table.

go to the bathroom on the second floor 
inside of the room with teddy bear on the 
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down the end table.

Walk between the two kitchen islands and 
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archway and stop just after you pass 
through it. Wait there. (✗)

REVERIE: Go to the living room and ipe 
down the end table.

Walk through the kitchen. Walk through the 
archway to the left of the stove. Wait at the 
framed landscape painting. (✗)

Figure 3. Predicted trajectories of DUET on REVERIE val unseen split (top) and R2R val unseen split (bottom). The green and checkered
flags denote start and target locations respectively.
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