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A. Additional Experimental Details
A.1. More Details to Train Classification Models

We examined various baseline vision Transformer mod-
els including DeiT [13], PVT [17], CaiT [14], XCiT [6],
and Swin [10]. As we try to carry out a nearly unified train-
ing scheme for different models, we make minimal changes
to hyperparameters compared to the DeiT [13] training
recipe, unless specified otherwise. In doing so, the training
schemes will be slightly adjusted to the official implemen-
tations of individual model variants.

We primarily follow the settings of the data augmen-
tation and regularization adopted in [!3], including Ran-
dAug [4], Stochastic Depth [8], Mixup [19] and Cut-
Mix [18]. We don’t adopt repeated augment [7]. For all
models, the initial learning rate, the total training batch size,
and weight decays is 0.001, 1000, 0.03 respectively. We set
warmed up for 20 epochs expect DeiT-B keeping 5 epochs
to reach the initial learning rate . All Transformers are
trained for 300 epochs expect that El-Nouby et al. [6] and
Touvron et al. [14] report 400 epochs for XCiT and CaiT
respectively. The accuracy of our baseline implementation
fluctuates only by +0.1% compared with results reported in
DeiT [13]. Note that we do not use any external dataset for
pre-training and we do not use knowledge distillation.

DeiT

A.2. Implementation Details of Compared Mixup
Variants

The comparison with state-of-the-art Mixup variants is
conducted in Section 4.6. We explain the implementation
details here. The official implementations of Mixup variants
are mainly based on the backbone of ResNet-50, and we
apply their methods into training DeiT-S.

Baseline Baseline in Table 8 is chosen to be the default
DeiT-S framework excluding CutMix in training.

Attentive-CutMix Attentive-CutMix is implemented based
on the unofficial pytorch repository '. Attentive-CutMix
contains an affiliated model (i.e. ResNet-50) for saliency
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d 6 8 10 12 rollout
top-1 Acc 80.3 80.3 80.4 80.7 80.4
Table 1. Ablation study on attention generation. Attention matrix
used for TransMix is output from the d-th block of DeiT-S. Fol-

lowing [1, 2], rollout applies matrix multiplication across all 12
blocks’ attention matrices.

map extraction and a backbone model for image classifica-
tion.

SaliencyMix Saliency-Mix is implemented based on the of-
ficial pytorch codebase . SaliencyMix uses third-party li-
brary opencv to extract the saliency map with

cv2.saliency . StaticSaliencyFineGrained_create ()

Puzzle-Mix Puzzle-Mix is implemented following the of-
ficial pytorch codebase °. Puzzle-Mix forwards and back-
wards the model twice to detect object saliency by comput-
ing the gradients of the neural network following [12].

B. Additional Results

Ablation Study The class attention A can obtained from
any Tranformer Block in ViTs. Due to the global recep-
tive field, the class attention would not have big difference
across blocks [ 1, 5]. We first study the effect of attention
matrix generated in different depth d for DeiT-S. Then we
follow [1, 2] to compute the attention rollout, which aggre-
gate the attention matrices from all blocks by matrix multi-
plications. According to the results, we found that the de-
fault setting with d = 12 performs the best. Notably, the
total number of Transformer block with class token is vary-
ing in different vision Transformers (e.g. 24 for XCiT, 2 for
CaiT, 12 for DeiT). Particularly, PVT designs hierarchical
Transformer blocks with 4 different resolution scales, and
therefore an extra downsample step is a must if using early
scale attention matrices. Hence, using the attention from the
last Transformer block as default can not only avoid finding
a optimal d exhaustingly but also be compatible for all ViT
variants.

Zhttps://github.com/afm-shahab-uddin/SaliencyMix
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Method Backbone Params top-1 Acc (%)
Baseline 25M 76.3
CutMix [18] 25M 78.6
ResNet-50
SaliencyMix [15] 25M 78.7
Puzzle-Mix [9] 25M 78.8
Baseline 22M 78.6
CutMix [ 18] 22M 79.8
Attentive-CutMix [16] . 46M 71.5
DeiT-S
SaliencyMix [15] 22M 79.2
Puzzle-Mix [9] 22M 79.8
TransMix 22M 80.7

Table 2. Comparison with state-of-the-art Mixup variants with the
backbone of either ViT or CNN on ImageNet-1k. All listed models
are trained for 300 epochs towards fair comparison. ResNet-50
results are borrowed from the paper [15].

Results on DeiT with knowledge distillation DeiT’s ac-
curacy can be further boosted with knowledge distilla-
tion [13]. Here we conduct experiments on DeiT distilla-
tion, and TransMix can improve DeiT-S-Distill and DeiT-
B-Distill without cost consistently. TransMix lifts the accu-
racy of DeiT-S-Distill from 81.2% to 81.6%, and the accu-
racy of DeiT-B-Distill from 83.4% to 83.7%.

Mixup variants on CNN and ViT We also attach the offi-
cial results of some Mixup variants with the backbone of
CNN. Results on the ResNet-50 backbone are borrowed
from [9]. All models are trained for 300 epochs towards fair
comparison. As backbone, DeiT-S has similar number of
parameters to ResNet-50. Table 2 shows that SaliencyMix
and Puzzle-Mix only improve over CutMix by at most 0.2%
on ResNet-50 and show no advancement over CutMix on
DeiT-S.

C. More Visualizations

We provide more visualizations as shown in Figure 1.

Effects of Different Augmentations Following [13],
we conduct ablation study on different types of strong
data augmentation including Random-Augment [4], Auto-
Augment [3], Mixup [19], Cutmix [18] and our TransMix.
The ablation study is evaluated on the model of DeiT-S on
ImageNet-1k.
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Figure 1. The visualization including image A, image B, mixed
image, attention map obtained from XCiT-L when input mixed im-
age, and corresponding label assignments. The label assignments
include both the old area-ratio assignment and new TransMix as-
signment.

BaseAug RandAug Mixup CutMix TransMix top-1 Acc (%)
57
v 73.3
v 76.5
v 78.6
v 79.9
4 80.7

Table 3. Ablation study on augmentation strategy for DeiT-S on
ImageNet-1k. The symbols v and X indicate that we use and do
not use the corresponding augmentations, respectively.
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