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6. Supplementary

We provide detailed network architectures for both 2D

and 3D experiments in Section 6.1, training details in Sec-

tion 6.2 and dataset details in Section 6.3. Section 6.4 out-

lines the approach to convert point clouds to images and

Section 6.5 the method to convert LOGAN point clouds to

meshes. Lastly, Section 6.6 shows user study details and

additional results are provided in Section 6.7.

6.1. Implementations

2D Network architecture. Figure 9 shows the detailed net-

work architecture for our 2D experiments. In the autoen-

coder, given a binary 2D image of size 256 × 256 as input,

several 2D convolutions are used to downsample the input

image into a latent grid of size 2×2×64. We then use bilin-

ear interpolation to extract position-aware encoding given

the query point p. This position-aware encoding is passed to

several fully connected layers to predict the inside/outside

value. The generator takes in the latent grid extracted by the

encoder and produces a translated latent grid with the same

size as input. The discriminator expects the translated latent

grid and outputs a latent grid of size 2× 2.

3D Network architecture. Figure 10 shows the detailed

network architecture for our 3D experiments. Analogously

to the 2D case, given a 3D voxel of size 64×64×64 as input,

the autoencoder uses several 3D convolutions to downsam-

ple the input voxel into a latent grid of size 2× 2× 2× 32.

Trilinear interpolation then extracts the position-aware en-

coding given the position of the query point p. Again,

this position-aware encoding is passed to several fully con-

nected layers to predict the inside/outside value. The gener-

ator and discriminator are equivalent to the 2D case, adapted

to the latent grid size of 2× 2× 2.

6.2. Training details

In the 2D experiments, we use n = 256 pixels, k = 2,

and m = 64. For autoencoding, we train all the 2D ex-

periments for 800 epochs with batch size 24, and use Adam

optimizer with an initial learning rate of 0.00005. We decay

the learning rate by half after 400 epochs. For the transla-

tion, we train the generators and discriminators for 1,200

epochs with batch size 128, we use Adam optimizer with

an initial learning rate of 0.002 and halve the learning rate

every 100 epochs until it reaches 0.0005. We empirically

set α = 10, β = 20 and γ = 20 for Equation (2) and (3).

In the 3D experiments, we use n = 64 voxel resolu-

tion, k = 2 and m = 32. When training the autoen-

coding for 3D shapes, we employ progressive training [3]

on points sampled from voxel grids with different resolu-

tions (163, 323, 643). We train the position-aware encoding

model on each resolution with 300, 300 and 600 epochs,

respectively. Adam optimizer and an initial learning rate

of 0.00005 are used throughout the training of the autoen-

coding. Here, we train the generators and discriminators

for 4,800 epochs with batch size 128 and Adam optimizer

with an initial learning rate of 0.002 for the translation. The

learning rate is decayed by half every 100 epochs until it

reaches 0.0005 and we empirically chose α = 10, β = 100

and γ = 20 for Equation (2) and (3).

6.3. Datasets

We provide details about the 2D and 3D shape datasets

used in the Section 4. For the 2D datasets, to sample ground

truth inside/outside values, we first find the boundary of the

shapes and then sample 16, 384×2/3 points near the bound-

ary (including points on the boundary) with a radius of 10

pixels. Finally, we randomly sample 16, 384 × 1/3 points

across the rest of the image, so the total number of sample

points is 16,384 and the ratio of points near the boundary

and the rest of the image is 2 : 1. We further assign the

weights (wp in Equation (2)) of all sampled points to 1. For

the Solid ↔ Dotted dataset, we assign the weights of the

points sampled near the boundary to 2 and the weights of

the rest of the points to 1. For the 3D dataset, we make use

of chair and table shapes from ShapeNet [1] and adopt the

sampling strategy from [3].

RegularAH ↔ ItalicAH. Each domain has 4,000 training

images and 1,000 testing images with letters A and H .
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Figure 9. Detailed network architecture for 2D experiments
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Figure 10. Detailed network architecture for 3D experiments. Note that the input of the autoencoder shown in the figure above is the mesh

extracted via Marching Cubes [4] from the original input voxel for better visualization purpose.

SharpAH ↔ SmoothAH. Domain SharpAH has 2,812

training images and 380 testing images with letters A and

H . Domain SmoothAH has 3,062 training images and 380

testing images with letters A and H .

RegularGR ↔ BoldGR. Each domain has 4,000 training

images and 1,000 testing images with letters G and R.

A ↔ H, G ↔ R, M ↔ N. Each domain has 6,466 training

images and 1,000 testing images with letters A, H , G, R,

M and N , respectively.

SolidAH ↔ DottedAH. We first collect letters A and H
from the above domains. We then randomly divide images

into two splits, one for SolidAH with 8,396 images and

the other for DottedAH with 8,084 images. To insert dots,

we first find the medial axis of the shapes and then keep

drawing circles along the medial axis with the radius of 12

pixels if the circle 1) is inside the boundary and 2) does not

overlap with other circles, until the shape has five circles.

We then randomly divide the dataset, so each domain has

224 testing images and the rest for training.

Chair ↔ Table. Domain Chair has 4,768 training shapes

and 2,010 testing shapes. Domain Table has 5,933 training

shapes and 2,526 testing shapes.

Chair with armrest ↔ without armrest. Domain chair

with armrest has 1,710 training shapes and 428 testing

shapes. Domain chair without armrest has 2,857 training

shapes and 715 testing shapes.

Tall table ↔ Short table. Each domain has 2,500 training

shapes and 500 testing shapes.



6.4. Point cloud to image

As described in Section 4.2, we convert LOGAN [5]

point clouds to images for fair comparison. For each point

in a given point cloud, we first find all its neighbors within

a radius of r = 10, we then compute the convex hull of all

the points to get the corresponding image.

6.5. LOGAN point cloud to mesh

To validate that LOGAN followed by an implicit net-

work is inadequate to produce compact translated shapes,

we first transform LOGAN point clouds to the IMNET [3]

coordinate system, we then voxelize [2] the point clouds

and fill the inner volume. Finally, we feed the voxelized

point clouds to a pre-trained IMNET [3] to obtain an im-

plicit shape and use Marching Cubes [4] to extract the mesh

surface. Figure 18-23 (c) show the translations of LOGAN

in mesh representation.

6.6. User study

Section 4.3 describes the user study we performed. We

conducted the user study to measure the quality of the

translation in the case of Chair ↔ Table. We provide

details about task description and randomly selected test

shapes for the user study. As LOGAN only produces point

clouds at 2,048 resolution, we employ the sampling strat-

egy from [3] to obtain 2,048 points from the surfaces of

the meshes to fairly compare with it. In total 72 users par-

ticipated in the study, half of which were presented with

Chair ↔ Table translations, while the rest was asked to

rank Table ↔ Chair translations.

Task description. The users were shown the following task

description before they started the study: ªWe will show

you a chair and then three computer-generated shapes that

are supposed to be table version of that chair. Specifically,

the generated shape should be a table, and further, it should

be a table that is as similar to the original chair as possible

in terms of its features or characteristics. Using your best

judgement, please rank each of the computer-generated ta-

bles in terms of how well it fulfills the criteria. 1 is the best,

2 is the second best and 3 is the third best.º Figure 18-19

(d-g) show the test shapes used in the user study.

6.7. Additional results

In this section we provide additional randomly selected

results and compare them with other unpaired cross-domain

translation networks in the following figures:

• Figure 11 - A ↔ H

• Figure 12 - G ↔ R

• Figure 13 - M ↔ N

• Figure 14 - SolidAH ↔ DottedAH

• Figure 15 - RegularAH ↔ ItalicAH

• Figure 16 - RegularGR ↔ BoldGR

• Figure 17 - SharpAH ↔ SmoothAH

• Figure 18, 19 - Chair ↔ Table

• Figure 20, 21 - Armrest ↔ w/oArmrest

• Figure 22, 23 - Tall table ↔ Short table
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Figure 11. Randomly selected qualitative comparison of translation results by different translation networks on (left) A → H and (right)

H → A. (a) Test input, (b) UNIST with position-aware encoding, (c) UNIST with regular encoding, (d) LOGAN in point cloud represen-

tation, (e) LOGAN in image representation, (f) CycleGAN and (g) GANHopper.
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Figure 12. Randomly selected qualitative comparison of translation results by different translation networks on (left) G → R and (right)

R → G. (a) Test input, (b) UNIST with position-aware encoding, (c) UNIST with regular encoding, (d) LOGAN in point cloud represen-

tation, (e) LOGAN in image representation, (f) CycleGAN and (g) GANHopper.
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Figure 13. Randomly selected qualitative comparison of translation results by different translation networks on (left) M → N and

(right) N → M . (a) Test input, (b) UNIST with position-aware encoding, (c) UNIST with regular encoding, (d) LOGAN in point cloud

representation, (e) LOGAN in image representation, (f) CycleGAN and (g) GANHopper.
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Figure 14. Randomly selected qualitative comparison of translation results by different translation networks on (left) SolidAH ↔

DottedAH and (right) DottedAH ↔ SolidAH . (a) Test input, (b) UNIST with position-aware encoding, (c) UNIST with regular

encoding, (d) LOGAN in point cloud representation, (e) LOGAN in image representation, (f) CycleGAN and (g) GANHopper.
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Figure 15. Randomly selected qualitative comparison of translation results by different translation networks on (left) RegularAH ↔

ItalicAH and (right) ItalicAH ↔ RegularAH . (a) Test input, (b) UNIST with position-aware encoding, (c) LOGAN in point cloud

representation, (d) LOGAN in image representation, (e) CycleGAN, (f) UNIST and (g) MUNIT.
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Figure 16. Randomly selected qualitative comparison of translation results by different translation networks on (left) RegularGR ↔

BoldGR and (right) BoldGR ↔ RegularGR. (a) Test input, (b) UNIST with position-aware encoding, (c) LOGAN in point cloud

representation, (d) LOGAN in image representation, (e) CycleGAN, (f) UNIST and (g) MUNIT.
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Figure 17. Randomly selected qualitative comparison of translation results by different translation networks on (left) SharpAH ↔

SmoothAH and (right) SmoothAH ↔ SharpAH . (a) Test input, (b) UNIST with position-aware encoding, (c) UNIST with regular

encoding, (d) LOGAN in point cloud representation and (e) LOGAN in image representation.
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Figure 18. Randomly selected qualitative comparison of translation results by different translation networks on (left) Chair ↔ Table
and (right) Table ↔ Chair. (a) Test input, (b) translation of UNIST with position-aware encoding in mesh representation, (c) LOGAN

translation in mesh representation, (d) LOGAN input point cloud representation, (e) translation of UNIST with position-aware encoding

in point cloud representation, (f) translation of UNIST with regular encoding in point cloud representation and (g) LOGAN translation in

point cloud representation.
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Figure 19. Randomly selected qualitative comparison of translation results by different translation networks on (left) Chair ↔ Table
and (right) Table ↔ Chair. (a) Test input, (b) translation of UNIST with position-aware encoding in mesh representation, (c) LOGAN

translation in mesh representation, (d) LOGAN input point cloud representation, (e) translation of UNIST with position-aware encoding

in point cloud representation, (f) translation of UNIST with regular encoding in point cloud representation and (g) LOGAN translation in

point cloud representation.
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Figure 20. Randomly selected qualitative comparison of translation results by different translation networks on (left) chair wArmrest ↔
w/oArmrest and (right) chair w/oArmrest ↔ wArmrest. (a) Test input, (b) UNIST translation in mesh representation, (c) LOGAN

translation in mesh representation, (d) LOGAN input point cloud representation, (e) UNIST translation in point cloud representation and

(f) LOGAN translation in point cloud representation.
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Figure 21. Randomly selected qualitative comparison of translation results by different translation networks on (left) chair wArmrest ↔
w/oArmrest and (right) chair w/oArmrest ↔ wArmrest. (a) Test input, (b) UNIST translation in mesh representation, (c) LOGAN

translation in mesh representation, (d) LOGAN input point cloud representation, (e) UNIST translation in point cloud representation and

(f) LOGAN translation in point cloud representation.
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Figure 22. Randomly selected qualitative comparison of translation results by different translation networks on (left) Tall table ↔

Short table and (right) Short table ↔ Tall table. (a) Test input, (b) UNIST translation in mesh representation, (c) LOGAN trans-

lation in mesh representation, (d) LOGAN input point cloud representation, (e) UNIST translation in point cloud representation and (f)

LOGAN translation in point cloud representation.
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Figure 23. Randomly selected qualitative comparison of translation results by different translation networks on (left) Tall table ↔

Short table and (right) Short table ↔ Tall table. (a) Test input, (b) UNIST translation in mesh representation, (c) LOGAN trans-

lation in mesh representation, (d) LOGAN input point cloud representation, (e) UNIST translation in point cloud representation and (f)

LOGAN translation in point cloud representation.
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