A. Implementation Details

All models included in experiments are trained from
scratch to perform fair comparisons.

For video frame interpolation methods incorporated in
the experiments (i.e. Super SloMo [3], QVI [8], and
DAIN [1]), we train them on Adobe240 dataset [5]. We
keep all the training settings the same as proposed in their
original papers, including the optimizer, initial learning
rate, learning rate decay strategy, and the number of training
epochs. For data settings, 9 consecutive frames are selected
from video clips for training in every iteration. Networks
take the first and last frames as inputs and generate interme-
diate 7 frames. We calculate loss between generated frames
and the original ground-truth frames. Each video frame is
resized to have a shorter spatial dimension of 360, and a
random crop of 352352 is performed.

Zooming SlowMo [6] and TMNet [7] are two STVSR
models included in our experiments. Zooming SlowMo
only supports fixed frame interpolation, and the interpola-
tion time is set to 0, 0.5, 1 in the original paper. Following
their settings, we also train the model from scratch to in-
terpolate the fixed time instances. To ensure that the input
video frames of all models are of the same frame rate, we
extract 9 consecutive frames from video clips and take the
1%t and 9" frames as inputs. We then down-sample the in-
put frames via Bicubic interpolation by a factor of 4 and use
the network to predict the high-resolution versions of the
1%, 5th and 9** frames. TMNet supports arbitrary frame
interpolation. In its paper, the authors mention that TM-
Net needs a two-stage training process for convergence, and
we follow their suggestions. In the first stage, we pre-train
the network on the Vimeo90K dataset [9]. The Vimeo90K
dataset consists of 7-frame video sequences. We use the
15t, 374 5th and 7t" frames after down-sampling as the
network inputs and predict the high-resolution results of all
the 7 frames, which means that the interpolation time is set
to 0, 0.5, 1 in this stage. In the second stage, we select 9
consecutive frames from video clips, and the 1¢ and 9"
frames are taken as inputs. After down-sampling, we use
the network to generate high-resolution predictions of all 9
frames and calculate the loss value with the original high-
resolution frames. TMNet is trained with more data, which
may lead to advantages in the experiments.

For the training of VideoINR, we select 9 consecutive
frames and down-sample the 15 and 9*" frames as model
inputs. In each iteration, We randomly select three frames
from the 9-frame video sequence and use the network to
generate high-resolution predictions at the time instances of
the three selected frames.

We keep the training settings unchanged for Zooming
SlowMo, TMNet, and VideoINR. All three models are op-
timized with the Charbonnier loss function [4].
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Figure 1. Inference time comparisons on different space scales.

Figure 2. Failure case. Left is the overlay of frames at t=0 and t=1.
Right is the interpolated frame at t=0.5

B. Efficiency on Different Scales

To evaluate the efficiency of VideoINR on different up-
sampling space scales, we provide more inference time
comparisons in Figure 1. We select the two-stage method
composed of SuperSlomo and LIIF as the baseline, as it
supports arbitrary up-sampling scales on both space and
time.

C. Limitations

In some challenging cases, large motion and occlusion
result in errors on the motion flow field, leading to blurred
results with unclear boundaries. We show a failure cases of
VideoINR in Figure 2.

D. Additional Qualitative Results

We provide more qualitative results in Figures 3,4,5,6.
We compare VideoINR with two STVSR methods,
DAIN [1] + BasicVSR [2] and TMNet [7]. The up-sampling
space scale is set to 4 for all examples. In Figure 3, 4, we set
the time scale for interpolation to 8, which is in our training
distribution. We observe that DAIN + BasicVSR and TM-
Net tend to generate blurry regions or artifacts. In contrast,
the results of VideoINR are consistent and aligned across
two input frames, with sharp edges and clear details. In Fig-
ure 5, 6, we set the time scale to 12 and 16, which are out
of the training distribution. We find that VideoINR well re-
covers objects with large motion and preserves better textu-
ral information compared with other methods. In summary,
VideoINR shows the advantages of using implicit function
to represent continuous videos and address the space-time
video super-resolution task. More visualization results can
be found in the provided video.
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Figure 3. Qualitative comparisons of different STVSR methods on in-distribution time scale. Best zoom in for better visualization.
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Figure 4. Qualitative comparisons of different STVSR methods on in-distribution time scale. Best zoom in for better visualization.
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Figure 5. Qualitative comparisons of different STVSR methods on out-of-distribution time scale. Best zoom in for better visualization.
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Figure 6. Qualitative comparisons of different STVSR methods on out-of-distribution time scale. Best zoom in for better visualization.
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